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9 Post-Newtonian theory: System of isolated bodies

In this chapter we apply the results of Chapter 8 to situations in which a fluid distribution
breaks up into a collection of separated bodies. Our aim is to go from a fine-grained descrip-
tion involving the fluid variables {ρ∗, p,�, v} to a coarse-grained description involving
a small number of center-of-mass variables for each body. We accomplish this reduction
in Sec. 9.1, and in Sec. 9.2 we apply it to a calculation of the spacetime metric in the
empty region between bodies; the metric is thus expressed in terms of the mass-energy
MA, position r A(t), and velocity vA(t) of each body. In Sec. 9.3 we derive post-Newtonian
equations of motion for the center-of-mass positions, and in Sec. 9.4 we show that the
same equations apply to compact bodies with strong internal gravity. In Sec. 9.5 we al-
low the bodies to rotate, and we calculate the influence of the spins on the metric and
equations of motion; we also derive evolution equations for the spin vectors. We con-
clude in Sec. 9.6 with a discussion of how point particles can be usefully incorporated
within post-Newtonian theory, in spite of their infinite densities and diverging gravitational
potentials.

9.1 From fluid configurations to isolated bodies

We consider a situation in which a distribution of perfect fluid breaks up into a number N
of separated components. We call each component a “body,” and label each body with the
index A = 1, 2, . . . , N . Mathematically, this means that we can express the fluid density as

ρ∗ =
∑

A

ρ∗
A; (9.1)

the sum extends over each body, and ρ∗
A is zero everywhere except within the volume

occupied by body A. In this situation we forbid the presence of matter between the bodies;
for example, there is no mass transfer between any members of the N -body system.

9.1.1 Center-of-mass variables

The material mass of body A is

m A :=
∫

A
ρ∗ d3x . (9.2)

414
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415 9.1 From fluid configurations to isolated bodies

The domain of integration VA is a time-independent region of three-dimensional space
that extends beyond the volume occupied by the body. It is sufficiently large that in a time
interval dt , the body will not cross the domain’s boundary SA; but it is sufficiently small that
VA does not include nor intersect another body within the system. We could have inserted
ρ∗

A in place of ρ∗ inside the integral, but since ρ∗ = ρ∗
A within VA, this distinction is not

necessary. By virtue of Eq. (1) in Box 8.4, we have that dm A/dt = 0.
We define the position of the center-of-mass of body A by

r A(t) := 1

m A

∫
A
ρ∗ x d3x . (9.3)

This definition is largely arbitrary (as we have observed before in Box 1.7), but it proves
convenient for our purposes: It produces simple expressions for the gravitational potentials,
and the equations of motion for each body take a simple form when expressed in terms of
r A. We next introduce

vA(t) := d r A

dt
= 1

m A

∫
A
ρ∗ v d3x (9.4)

as the velocity of the body taken as a whole, and the body’s acceleration is

aA(t) := dvA

dt
= 1

m A

∫
A
ρ∗ dv

dt
d3x . (9.5)

We evaluate this in Sec. 9.3 by inserting the post-Newtonian Euler equation within the
integral.

9.1.2 Relative variables; reflection symmetry

To carry out the integrations over the domain VA it is convenient to introduce the relative
variables

x̄ := x − r A(t), v̄ := v − vA(t); (9.6)

the vector x̄ gives the position of a fluid element relative to the center-of-mass r A(t), while
v̄ measures the velocity of this fluid element relative to the body velocity vA(t). Under this
transformation the domain VA is translated by −r A(t) and becomes a neighborhood of the
origin, and the volume element becomes d3 x̄ = d3x .

For technical reasons it will be useful to assume that each body is reflection-symmetric
about its center-of-mass. Mathematically, this means that we shall impose the property

ρ∗(t, r A − x̄) = ρ∗(t, r A + x̄), (9.7)

and subject the fluid pressure p and the specific internal energy density � to the same
symmetry. There is nothing particularly deep about this assumption, which is far less
restrictive, for example, than demanding that each body be spherically symmetric. A generic
body will not satisfy this symmetry requirement, but computations carried out for this
generic body will involve a lot of additional details that can be avoided if we impose
Eq. (9.7). In particular, the symmetry implies that any body integral that involves the
product of an odd number of internal vectors, such as x̄ or v̄, will vanish identically.
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416 Post-Newtonian theory: System of isolated bodies

For example, the integral
∫

A ρ∗(r A + x̄)x̄ j x̄ k v̄n d3 x̄ becomes − ∫
A ρ∗(r A − x̄)x̄ j x̄ k v̄n d3 x̄

under a reflection across the center-of-mass, and Eq. (9.7) implies that the integral must
vanish. In the following we frequently exploit this observation and eliminate many such odd
integrals; and this is, ultimately, the sole reason for introducing the symmetry requirement
of Eq. (9.7). In the course of our development we will accumulate a lot of evidence
to support the claim that the gravitational field outside the bodies, and the motion of
these bodies, are largely insensitive to details of internal structure. We might as well,
therefore, impose the reflection symmetry and benefit from its great convenience, feeling
sure that the longer computations required for a generic body would lead to the same
answers.

9.1.3 Structure integrals; equilibrium conditions

As we shall see, the internal structure of each body is characterized by a number of structure
integrals, which we introduce here. We first have the scalar quantities

TA := 1

2

∫
A
ρ∗v̄2 d3 x̄, (9.8a)

�A := −1

2
G

∫
A

ρ∗ρ∗′

|x̄ − x̄′| d3 x̄ ′d3 x̄, (9.8b)

PA :=
∫

A
p d3 x̄ , (9.8c)

E int
A :=

∫
A
ρ∗� d3 x̄, (9.8d)

HA := G

∫
A
ρ∗ρ∗′ v̄

′
j (x̄ − x̄ ′) j

|x̄ − x̄′|3 d3 x̄ ′d3 x̄, (9.8e)

which are all functions of time t . Here ρ∗, p, �, and v̄ are all expressed as functions of
t and position r A(t) + x̄, and ρ∗′ stands for ρ∗(t, r A + x̄′). We have encountered some of
these quantities before: TA is recognized as the total kinetic energy of body A (as measured
in A’s comoving frame), �A is the total gravitational potential energy, PA is the integrated
pressure, and E int

A is the total internal energy; HA is a new quantity.
We also have the tensorial quantities

I jk
A :=

∫
A
ρ∗ x̄ j x̄ k d3 x̄, (9.9a)

S jk
A :=

∫
A
ρ∗(x̄ j v̄k − x̄ k v̄ j

)
d3 x̄, (9.9b)

T jk
A := 1

2

∫
A
ρ∗v̄ j v̄k d3 x̄, (9.9c)

L jk
A :=

∫
A
v̄ j∂k p d3 x̄, (9.9d)

�
jk
A := −1

2
G

∫
A
ρ∗ρ∗′ (x̄ − x̄ ′) j (x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄, (9.9e)

(continued overleaf)
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417 9.1 From fluid configurations to isolated bodies

H jk
A := G

∫
A
ρ∗ρ∗′ v̄

′ j (x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄, (9.9f)

K jk
A := G

∫
A
ρ∗ρ∗′ v̄

′
n(x̄ − x̄ ′)n(x̄ − x̄ ′) j (x̄ − x̄ ′)k

|x̄ − x̄′|5 d3 x̄ ′d3 x̄, (9.9g)

where v̄′ j is the relative velocity field at position r A + x̄′. Some of these structure integrals,
like the quadrupole moment I jk

A , the angular-momentum tensor S jk
A , the kinetic-energy

tensor T jk
A , and the potential-energy tensor �

jk
A , have been encountered before; note that

TA = δ jkT jk
A and �A = δ jk�

jk
A . The others, H jk

A , K jk
A , and L jk

A , are new; note that HA =
δ jk H jk

A .
As an additional assumption concerning the bodies, we shall take them to be in dynamical

equilibrium. By this we mean that each body has had time, under its own internal dynamics,
to relax to a steady state in which its structure properties do not depend on time. This means,
in particular, that the structure integrals listed in Eqs. (9.8) and (9.9) can all be taken to
be time-independent. And as we show below in Sec. 9.1.7, the assumption also implies the
validity of the equilibrium conditions

2T jk
A + �

jk
A + δ jk PA = O(c−2) (9.10)

and

4H ( jk)
A − 3K jk

A + δ jk ṖA − 2L ( jk)
A = O(c−2). (9.11)

We also record the trace of Eq. (9.10),

2TA + �A + 3PA = O(c−2). (9.12)

It is important to understand that the equilibrium conditions are valid only approximately.
We have insisted that each body should reach an equilibrium state under its own internal
dynamics, which involves hydrodynamical processes and the body’s own gravitational field.
Each body, however, is also subjected to the gravitational influence of the remaining bodies,
and this external dynamics comes in two different guises. The first effect, and by far the most
important one, is the motion of the body’s center-of-mass in the field of the external bodies;
this will be considered in Sec. 9.3, and the key point here is that the motion of the body as
a whole does not prevent it from reaching an internal equilibrium state. The second effect,
however, produces a small deviation from equilibrium; this is the tidal interaction between
the body and its companions, produced by inhomogeneities in the external gravitational
field across the volume occupied by the body. This effect, however, is small when the bodies
are widely separated (we shall quantify this in the following subsection), and we shall ignore
it in this and the following sections. Our conclusion is that while the equilibrium conditions
are approximate, they hold to a large degree of accuracy, and this degree is quite sufficient
for our purposes.

9.1.4 Multipole structure

In principle the mass distribution of each body is characterized by an infinite number of
mass multipole moments I L

A (t), and the fluid motions within each body are characterized
by an infinite number of current multipole moments J j L

A (t); here L := k1k2 · · · k� is a
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multi-index that contains a number l of individual indices. The most important moments
have already been introduced: we have the mass monopole moment m A, the quadrupole
moment I jk

A , and the angular-momentum tensor S jk
A . We shall first simplify this description

by demanding that the bodies be well separated.
This condition can be formulated as follows. Let RA be a length scale associated with the

volume occupied by body A, and let sA := |x − r A| be the distance from A’s center-of-mass.
We assume that in most applications that will interest us,

RA � sA. (9.13)

This implies that when, for example, we evaluate the gravitational potentials outside each
body, we are allowed to ignore all terms generated by the quadrupole moment I jk

A and
its higher-order analogues. To see this, recall that relative to the monopole term in the
Newtonian potential, the quadrupole term scales as I jk

A /(m As2
A), or (RA/sA)2, which is

small by virtue of Eq. (9.13). The suppression is even more dramatic when the body is
intrinsically spherical, and deformed ever so slightly by its tidal coupling with the other
bodies; in this case I jk

A scales as m A R5
A/r3

AB instead of m A R2
A, where rAB := |r A − r B | is

the inter-body distance, and the quadrupole term is smaller than the monopole term by a
factor of order R5

A/(r3
ABs2

A) � 1. On the other hand, the condition of Eq. (9.13) is obviously
invalid when we examine the internal structure of each body.

In our initial treatment of the N -body system, we shall also simplify the multipole
description by taking each body to be non-rotating. We shall therefore set

S jk
A = 0, (9.14)

and maintain this assumption until Sec. 9.5, in which we finally incorporate the spinning
motion of each body into the metric and equations of motion.

9.1.5 Internal and external potentials

In the following computations we shall have to distinguish between the gravitational po-
tentials produced by body A and those produced by the remaining bodies in the system. To
accomplish this we proceed as in Sec. 1.6.3 and introduce a decomposition of each potential
into internal and external pieces. For example, the Newtonian potential U is decomposed
as

U = UA + U¬A, (9.15)

with

UA(t, x) = G

∫
A

ρ∗(t, x′)
|x − x′| d3x ′ (9.16)

denoting the internal piece, and

U¬A(t, x) =
∑
B �=A

G

∫
B

ρ∗(t, x′)
|x − x′| d3x ′ (9.17)

denoting the external piece.
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419 9.1 From fluid configurations to isolated bodies

As another example we examine the auxiliary potential �2 introduced in Eq. (8.8). Its
decomposition is

�2 = �2,A + �2,¬A, (9.18)

with

�2,A = G

∫
A

ρ∗′U ′

|x − x′| d3x ′ (9.19)

and

�2,¬A =
∑
B �=A

G

∫
B

ρ∗′U ′

|x − x′| d3x ′. (9.20)

But these expressions involve the Newtonian potential, and this should also be decomposed
into internal and external pieces. For �2,A we express U ′ as in Eq. (9.15) and get

�2,A = G

∫
A

ρ∗′U ′
A

|x − x′| d3x ′ + G

∫
A

ρ∗′U ′
¬A

|x − x′| d3x ′. (9.21)

For �2,ext we must be more careful, because the internal-external decomposition should
now refer to each body B instead of body A. In fact, to be fully clear we should refine
our decomposition and write U ′ = U ′

A + U ′
B + U ′

¬AB , with U ′
¬AB := ∑

C �=A,B

∫
C ρ∗′′|x′ −

x′′|−1 d3x ′′ now excluding bodies A and B. Then Eq. (9.20) becomes

�2,¬A =
∑
B �=A

{
G

∫
B

ρ∗′U ′
A

|x − x′| d3x ′ + G

∫
B

ρ∗′U ′
B

|x − x′| d3x ′ + G

∫
B

ρ∗′U ′
¬AB

|x − x′| d3x ′
}
.

(9.22)
Subtleties like these arise also in the decomposition of the potential �5; they are, of course,
a consequence of the non-linear nature of the field equations.

9.1.6 Total mass-energy

The total mass-energy of body A is MA := m A + (TA + �A + E int
A )/c2 + O(c−4), or

MA :=
∫

A
ρ∗

[
1 + 1

c2

(
1

2
v̄2 − 1

2
UA + �

)]
d3x + O(c−4) (9.23)

in view of Eqs. (9.8) and (9.16). In Sec. 8.4.5 we learned that the total mass-energy M of
the entire fluid system is a conserved quantity, d M/dt = 0. The manipulations that led to
this conclusion involved the integration of the fluid equations over the volume occupied
by the entire fluid. The integrations, however, can be limited to the volume occupied by
body A, and it is easy to see that the same manipulations would now reveal that each MA

is separately conserved:

d MA

dt
= 0. (9.24)

The relation between M and the sum
∑

A MA is elucidated below in Sec. 9.3.6; the grav-
itational interaction between bodies prevents these quantities from being equal to each
other.

cmw
Sticky Note
need to modify slightly since conservation is not exact, because of multipole couplings
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We shall see below that it is only the combination MA that appears in the metric of an N -
body system; the components m A, TA, �A, or E int

A do not make individual appearances. We
shall see also that only MA appears in the equations of motion. The spacetime of an N -body
system therefore depends only on the total mass-energy of each body, and the decomposition
of this mass-energy into material mass, kinetic energy, gravitational potential energy, and
internal energy is of no consequence; two bodies with vastly different internal compositions
but the same mass-energy will produce the same spacetime and move in identical manners.
This is a statement of the strong equivalence principle in post-Newtonian theory. (Refer
to Sec. 5.1 for a discussion of the weak, strong, and Einstein versions of the principle of
equivalence.)

The important physical role of the total mass-energy MA suggests that we might refine
our notion of center-of-mass and adopt

RA := 1

MA

∫
A
ρ∗x

[
1 + 1

c2

(
1

2
v̄2 − 1

2
UA + �

)]
d3x + O(c−4) (9.25)

instead of Eq. (9.3) as a proper definition of center-of-mass position. Fortunately, the
definitions are equivalent under the symmetry assumption of Eq. (9.7):

RA = r A + O(c−4). (9.26)

To prove this we insert x = r A + x̄ inside the integral, and see immediately that RA differs
from r A by the integral

1

MAc2

∫
A
ρ∗ x̄

(
1

2
v̄2 − 1

2
UA + �

)
d3 x̄ .

The first and third terms vanish after integration, because the integrals involve an odd
number of internal vectors. The second term also leads to a vanishing integral, because∫

A
ρ∗ x̄UA d3 x̄ = G

∫
A
ρ∗ρ∗′ x̄

|x̄ − x̄′| d3 x̄ ′d3 x̄ (9.27)

is odd under a reflection across the center-of-mass. The integral vanishes, and we have
established the equality of RA and r A. There is no need to modify our definition for the
center-of-mass position.

9.1.7 Virial identities

In this subsection we derive the virial identities that give rise to the equilibrium conditions
of Eqs. (9.10) and (9.11). They are

1

2
İ jk

A = 1

2
S jk

A +
∫

A
ρ∗v̄ j x̄ k d3 x̄, (9.28a)

1

2
Ï jk

A = 2T jk
A + �

jk
A + δ jk PA +

∫
A
ρ∗ x̄ ( j∂k)U¬A d3 x̄ + O(c−2), (9.28b)

1

2

...
I

jk
A = 4H ( jk)

A − 3K jk
A + δ jk ṖA − 2L ( jk)

A +
∫

A
ρ∗ x̄ ( j d

dt
∂k)U¬A d3 x̄

+ 3
∫

A
ρ∗v̄( j∂k)U¬A d3 x̄ + O(c−2). (9.28c)
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The identities are generated by repeated differentiation of I jk
A = ∫

A ρ∗ x̄ j x̄ k d3 x̄ with respect
to time. Equation (9.28a) follows easily from a first differentiation and the definition of the
angular-momentum tensor; when the body is non-spinning and in dynamical equilibrium,
the identity reveals that

∫
A
ρ∗v̄ j x̄ k d3 x̄ = 0. (9.29)

Equation (9.28b) features an integral involving the external Newtonian potential in addition
to the structure integrals introduced in Eq. (9.9); under the condition of Eq. (9.13) the
external term is suppressed by a factor of order (RA/rAB)2 � 1 with respect to �

jk
A , and

it can be neglected. At equilibrium the identity gives rise to Eq. (9.10). And similarly, the
external terms can be neglected in Eq. (9.28c), and we recover Eq. (9.11) when the body is
in dynamical equilibrium.

We now proceed with the derivation of Eq. (9.28b). Taking two derivatives of the
quadrupole-moment tensor produces

1

2
Ï jk

A =
∫

A
ρ∗ x̄ ( j āk) d3 x̄ +

∫
A
ρ∗v̄ j v̄k d3 x̄, (9.30)

where āk = dvk/dt − a j
A is the acceleration of a fluid element relative to a j

A := dv
j
A/dt ,

the acceleration of the center-of-mass. The second integral is 2T jk
A , and to evaluate the first

we substitute the Newtonian version of Euler’s equation, ρ∗dvk/dt = −∂k p + ρ∗∂kU +
O(c−2). We obtain

1

2
Ï jk

A = 2T jk
A −

∫
A

x̄ ( j∂k) p d3 x̄ +
∫

A
ρ∗ x̄ ( j∂k)U d3 x̄ + O(c−2) (9.31)

after noting that the terms involving aA vanish identically. We next integrate the pressure
term by parts and decompose the potential term into internal and external pieces; this yields

1

2
Ï jk

A = 2T jk
A + δ jk PA +

∫
A
ρ∗ x̄ ( j∂k)UA d3 x̄ +

∫
A
ρ∗ x̄ ( j∂k)U¬A d3 x̄ + O(c−2). (9.32)

The integral involving UA is

−G

∫
A
ρ∗ρ∗′ x̄ ( j (x̄ − x̄ ′)k)

|x̄ − x̄′|3 d3 x̄ ′d3 x̄, (9.33)

and by switching the identity of the integration variables we can also write it as

+G

∫
A
ρ∗′ρ∗ x̄ ′( j (x̄ − x̄ ′)k)

|x̄ − x̄′|3 d3 x̄d3 x̄ ′, (9.34)

or as

−1

2
G

∫
A
ρ∗ρ∗′ (x̄ − x̄ ′) j (x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄, (9.35)

which we recognize as �
jk
A . Making the substitution in Eq. (9.32) gives us Eq. (9.28b).
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Moving on to Eq. (9.28c), we return to Eq. (9.32) and differentiate it with respect to time.
We get

1

2

...
I

jk
A = 2Ṫ jk

A + δ jk ṖA +
∫

A
ρ∗ x̄ ( j d

dt
∂k)UA d3 x̄ +

∫
A
ρ∗v̄( j∂k)UA d3 x̄

+
∫

A
ρ∗ x̄ ( j d

dt
∂k)U¬A d3 x̄ +

∫
A
ρ∗v̄( j∂k)U¬A d3 x̄ + O(c−2). (9.36)

The derivative of the kinetic-energy tensor is Ṫ jk
A = ∫

A ρ∗v̄( j āk) d3 x̄ , and this becomes

Ṫ jk
A = −

∫
A
v̄( j∂k) p d3 x̄ +

∫
A
ρ∗v̄( j∂k)UA d3 x̄ +

∫
A
ρ∗v̄( j∂k)U¬A d3 x̄ + O(c−2) (9.37)

after invoking Euler’s equation and decomposing U into internal and external pieces.
The pressure integral is L ( jk)

A , and we note that the integral involving UA also appears in
Eq. (9.36); it is given by

−G

∫
A
ρ∗ρ∗′ v̄

( j (x̄ − x̄ ′)k)

|x̄ − x̄′|3 d3 x̄ ′d3 x̄ = +G

∫
A
ρ∗′ρ∗ v̄′( j (x̄ − x̄ ′)k)

|x̄ − x̄′|3 d3 x̄d3 x̄ ′, (9.38)

which is recognized as H ( jk)
A . We therefore have

Ṫ jk
A = H ( jk)

A − L ( jk)
A +

∫
A
ρ∗v̄( j∂k)U¬A d3 x̄ + O(c−2), (9.39)

and this can be inserted within Eq. (9.36).
We next work on the integral involving d(∂kUA)/dt in Eq. (9.36). We have

d

dt
∂kUA = ∂t∂

kUA + vn∂n∂
kUA

= −G

∫
A
ρ∗′v′n∂n′

(x − x ′)k

|x − x′|3 d3x ′ − G

∫
A
ρ∗′vn∂n

(x − x ′)k

|x − x′|3 d3x ′, (9.40)

and evaluation of the partial derivatives yields

d

dt
∂kUA = −G

∫
A
ρ∗′ (v − v′)k

|x − x′|3 d3x ′ + 3G

∫
A
ρ∗′ (v − v′)n(x − x ′)n(x − x ′)k

|x − x′|5 d3x ′.

(9.41)
Now∫

A
ρ∗ x̄ j d

dt
∂kUA d3 x̄ = −G

∫
A
ρ∗ρ∗′ x̄ j (v̄ − v̄′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄

+ 3G

∫
A
ρ∗ρ∗′ (v̄ − v̄′)n(x̄ − x̄ ′)n x̄ j (x̄ − x̄ ′)k

|x̄ − x̄′|5 d3 x̄ ′d3 x̄, (9.42)

and we see that by playing with the identities of the integration variables – our old “switch
trick” x̄ ↔ x̄′ – we can bring the first integral to the form of H k j

A , while the second integral
is recognized as −K jk

A . Our final expression is therefore
∫

A
ρ∗ x̄ ( j d

dt
∂k)UA d3 x̄ = H ( jk)

A − 3K jk
A . (9.43)
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Collecting the results displayed in Eqs. (9.36), (9.39), and (9.43), we finally obtain the virial
identity of Eq. (9.28c).

9.2 Inter-bodymetric

9.2.1 Introduction

The post-Newtonian metric was first written down in Eq. (8.2); it is

g00 = −1 + 2

c2
U + 2

c4

(
	 − U 2

) + O(c−6), (9.44a)

g0 j = − 4

c3
U j + O(c−5), (9.44b)

g jk =
(

1 + 2

c2
U

)
δ jk + O(c−4), (9.44c)

and the gravitational potentials were expressed in terms of fluid variables in Eqs. (8.4). The
Newtonian and vector potentials are

U = G

∫
ρ∗′

|x − x′| d3x ′, (9.45a)

U j = G

∫
ρ∗′v′ j

|x − x′| d3x ′, (9.45b)

in which ρ∗′ and v′ j are respectively the density and velocity field expressed as functions
of time t and position x′. The post-Newtonian potential can be written as

	 = 2�1 − �2 + �3 + 4�4 − 1

2
�5 − 1

2
�6, (9.46)

in terms of the auxiliary potentials introduced in Eq. (8.8):

�1 = G

∫
ρ∗′v′2

|x − x′| d3x ′, (9.47a)

�2 = G

∫
ρ∗′U ′

|x − x′| d3x ′, (9.47b)

�3 = G

∫
ρ∗′�′

|x − x′| d3x ′, (9.47c)

�4 = G

∫
p′

|x − x′| d3x ′, (9.47d)

�5 = G

∫
ρ∗′∂ j ′U ′ (x − x ′) j

|x − x′| d3x ′, (9.47e)

�6 = G

∫
ρ∗′v′

jv
′
k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′. (9.47f)
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Our task in this section is to coarse-grain this fluid description and evaluate the potentials
for a system of N separated bodies. We shall do this at a fair distance from each body, and
exploit the condition sA � RA of Eq. (9.13); here sA is the distance to A’s center-of-mass,
and RA is the body radius, a length scale associated with the volume occupied by body A.

In the course of our calculations we will use all the tricks reviewed in Sec. 9.1, and
our results will be expressed in terms of the structure integrals of Eqs. (9.8) and (9.9). To
simplify the notation it is convenient to introduce

sA := x − r A(t), sA := |x − r A(t)|, nA := sA

sA
, (9.48)

as well as

r AB := r A(t) − r B(t), rAB := |r A(t) − r B(t)|, nAB := r AB

rAB
. (9.49)

We also need the identities

∂ j sA = n j
A, (9.50a)

∂ jksA = 1

sA

(
δ jk − n j

Ank
A

)
, (9.50b)

∂ jknsA = − 1

s2
A

(
δ jknn

A + δ jnnk
A + δknn j

A − 3n j
Ank

Ann
A

)
, (9.50c)

which are established by straightforward computations.

9.2.2 Potentials

Newtonian potentialU

To evaluate the Newtonian potential we begin with Eq. (9.45a), introduce the sum over
bodies, and change the integration variables to the relative position x̄′ := x′ − r A. This
gives

U (t, x) =
∑

A

G

∫
A

ρ∗(t, r A + x̄′)
|sA − x̄′| d3 x̄ ′, (9.51)

where sA := x − r A was introduced in Eq. (9.48). In the next step we invoke the condition
RA � sA and express |sA − x̄′|−1 as a Taylor expansion in powers of x̄ ′ j ,

1

|sA − x̄′| = 1

sA
− x̄ ′ j∂ j

1

sA
+ 1

2
x̄ ′ j x̄ ′k∂ jk

1

sA
+ · · · (9.52)

Substitution within each integral produces∫
A

ρ∗′

|sA − x̄′| d3 x̄ ′ = 1

sA

∫
A
ρ∗′ d3 x̄ ′ −

(
∂ j

1

sA

) ∫
A
ρ∗′ x̄ ′ j d3 x̄ ′

+ 1

2

(
∂ jk

1

sA

) ∫
A
ρ∗′ x̄ ′ j x̄ ′ j d3 x̄ ′ + · · · (9.53)

The first integral gives m A, the material mass of body A. The second integral vanishes by
virtue of the definition of r A given by Eq. (9.3). The third integral gives I jk

A , the quadrupole
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moment of the mass distribution. Our expression for U is therefore

U =
∑

A

(
Gm A

sA
+ 1

2
I jk

A ∂ jk
1

sA
+ · · ·

)
, (9.54)

and we shall truncate this to

U =
∑

A

Gm A

sA
+ · · · , (9.55)

noting that the quadrupole term is smaller than the monopole term by a factor of order
(RA/sA)2 � 1. This degree of accuracy is maintained in all following calculations.

Vector potentialU j

The steps involved in evaluation of the vector potential are very similar. We begin with
Eq. (9.45b), introduce the sum over bodies, and make the substitutions x′ = r A + x̄′ and
v′ = vA + v̄′ within the integrals. We get

U j =
∑

A

(
v

j
AG

∫
A

ρ∗′

|sA − x̄′| d3 x̄ ′ + G

∫
A

ρ∗′v̄′ j

|sA − x̄′| d3 x̄ ′
)

. (9.56)

The Taylor expansion of |sA − x̄′|−1 gives rise to Gm Av
j
A/sA + · · · for the first integral,

where we again neglect the quadrupole term. For the second integral we have∫
A

ρ∗′v̄′ j

|sA − x̄′| d3 x̄ ′ = 1

sA

∫
A
ρ∗′v̄′ j d3 x̄ ′ −

(
∂k

1

sA

) ∫
A
ρ∗′v̄′ j x̄ ′k d3 x̄ ′

+ 1

2

(
∂kn

1

sA

) ∫
A
ρ∗′v̄′ j x̄ ′k x̄ ′n d3 x̄ ′ + · · · (9.57)

The first integral vanishes by virtue of the definition of vA given by Eq. (9.4). The second
integral is the same one that appears in Eq. (9.29), and it vanishes for non-spinning bodies in
equilibrium. And the third integral vanishes for bodies that are reflection-symmetric about
the center-of-mass, as was discussed in Sec. 9.1.2. The neglected terms are suppressed by
a factor of order (RA/sA)3 relative to the leading term, and we conclude that

U j =
∑

A

Gm Av
j
A

sA
+ · · · , (9.58)

up to neglected terms of fractional order (RA/sA)2.

Auxiliary potential�1

Following the same steps we obtain

�1 =
∑

A

(
v2

AG

∫
A

ρ∗′

|sA − x̄′| d3 x̄ ′ + 2v
j
AG

∫
A

ρ∗′v̄′
j

|sA − x̄′| d3 x̄ ′

+ G

∫
A

ρ∗′v̄′2

|sA − x̄′| d3 x̄ ′
)

(9.59)
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from Eq. (9.47a). The first two terms are handled just as before, and the third integral is

∫
A

ρ∗′v̄′2

|sA − x̄′| d3 x̄ ′ = 1

sA

∫
A
ρ∗′v̄′2 d3 x̄ ′ −

(
∂ j

1

sA

) ∫
A
ρ∗′v̄′2 x̄ ′ j d3 x̄ ′

+ 1

2

(
∂ jk

1

sA

) ∫
A
ρ∗′v̄′2 x̄ ′ j x̄ ′k d3 x̄ ′ + · · · (9.60)

The first integral is 2TA, the second vanishes for reflection-symmetric bodies, and the third
term is suppressed by a factor of order (RA/sA)2 relative to the first. Collecting results, we
have obtained

�1 = 2
∑

A

GTA

sA
+

∑
A

Gm Av2
A

sA
+ · · · (9.61)

Auxiliary potential�2

This computation requires a little more care, because the Newtonian potential U ′ appears
inside the Poisson integral that defines �2. Decomposing this as U ′

A + U ′
¬A, Eq. (9.47b)

becomes

�2 =
∑

A

G

∫
A

ρ∗′U ′
A

|x − x′| d3x ′ +
∑

A

G

∫
A

ρ∗′U ′
¬A

|x − x′| d3x ′. (9.62)

In the first group of terms in Eq. (9.62) we insert U ′
A = G

∫
A ρ∗′′|x′ − x′′|−1 d3x ′′, as well

as x′ = r A + x̄′ and x′′ = r A + x̄′′. We obtain a sum of terms of the form

G2
∫

A

ρ∗′ρ∗′′

|x̄′ − x̄′′||sA − x̄′| d3 x̄ ′′d3 x̄ ′. (9.63)

We next express |sA − x̄′|−1 as a Taylor expansion in powers of x̄ ′ j . The leading term gives
rise to the contribution

G2

sA

∫
A

∫
A

ρ∗′ρ∗′′

|x̄′ − x̄′′| d3 x̄ ′′d3 x̄ ′, (9.64)

and we recognize this as −2G�A/sA. The linear term produces an odd integral that vanishes,
and the quadratic term gives rise to a negligible contribution of fractional order (RA/sA)2.
We therefore obtain −2

∑
A G�A/sA for the first group of terms in Eq. (9.62).

In the second group of terms we insert U ′
¬A = ∑

B �=A G
∫

B ρ∗′′|x′ − x′′|−1 d3x ′′, as well
as x′ = r A + x̄′ and x′′ = r B + x̄′′. We obtain a double sum over bodies A and B of terms
of the form

G2
∫

A

∫
B

ρ∗′ρ∗′′

|r AB + x̄′ − x̄′′||sA − x̄′| d3 x̄ ′′d3 x̄ ′. (9.65)

To evaluate this we express |sA − x̄′|−1 as a Taylor expansion in powers of x̄ ′ j , and we
simultaneously expand |r AB + x̄′ − x̄′′|−1 in powers of (x̄ ′ − x̄ ′′) j . Making the substitution,
we find that as before, the integral is dominated by the leading term in the expansion, that
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the linear terms do not contribute at all, and that the quadratic terms can be neglected.
We arrive at the expression

∑
A

∑
B �=A G2m Am B/(rABsA) for the second group of terms in

Eq. (9.62).
Collecting results, we find that our final expression for �2 is

�2 = −2
∑

A

G�A

sA
+

∑
A

∑
B �=A

G2m Am B

rABsA
+ · · · (9.66)

Auxiliary potentials�3,�4, and�5

The potentials �3 and �4 are computed exactly as the Newtonian potential U . We imme-
diately obtain

�3 =
∑

A

G E int
A

sA
+ · · · (9.67)

and

�4 =
∑

A

G PA

sA
+ · · · (9.68)

The computation of �5 resembles that of �2. We write Eq. (9.47e) in the form

�5 =
∑

A

G

∫
A
ρ∗′∂ j ′U ′

A

(x − x ′) j

|x − x′| d3x ′ +
∑

A

G

∫
A
ρ∗′∂ j ′U ′

¬A

(x − x ′) j

|x − x′| d3x ′, (9.69)

and work on each group of terms separately.
The first group is a sum of terms of the form

− G2
∫

A
ρ∗′ρ∗′′ (x̄

′ − x̄ ′′) j (sA − x̄ ′) j

|x̄′ − x̄′′|3|sA − x̄′| d3 x̄ ′′d3 x̄ ′, (9.70)

and to evaluate this we expand (sA − x̄ ′) j/|sA − x̄′| = ∂ j |sA − x′| in powers of x̄ ′k . We
obtain∫

A
ρ∗′∂ j ′U ′

A

(x − x ′) j

|x − x′| d3x ′ = −G
(
∂ j sA

) ∫
A
ρ∗′ρ∗′′ (x̄ ′ − x̄ ′′) j

|x̄′ − x̄′′|3 d3 x̄ ′′d3 x̄ ′

+ G
(
∂ jksA

) ∫
A
ρ∗′ρ∗′′ (x̄

′ − x̄ ′′) j x̄ ′k

|x̄′ − x̄′′|3 d3 x̄ ′′d3 x̄ ′

− G
(
∂ jknsA

) ∫
A
ρ∗′ρ∗′′ (x̄

′ − x̄ ′′) j x̄ ′k x̄ ′n

|x̄′ − x̄′′|3 d3 x̄ ′′d3 x̄ ′

+ · · · (9.71)

The first and third integrals are odd in the number of internal vectors and therefore vanish.
The second integral can be written as

1

2

∫
A
ρ∗′ρ∗′′ (x̄

′ − x̄ ′′) j (x̄ ′ − x̄ ′′)k

|x̄′ − x̄′′|3 d3 x̄ ′′d3 x̄ ′, (9.72)
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which we recognize as −�
jk
A /G. The neglected terms are of fractional order (RA/sA)2, and

we conclude that the first group of terms in Eq. (9.69) equals −∑
A G�

jk
A ∂ jksA.

The second group is a double sum of terms

− G2
∫

A

∫
B

ρ∗′ρ∗′′ (rAB + x̄ ′ − x̄ ′′) j (sA − x̄ ′) j

|r AB + x̄′ − x̄′′|3|sA − x̄′| d3 x̄ ′′d3 x̄ ′, (9.73)

and the integrals can be evaluated by expanding the factor multiplying ρ∗′ρ∗′′ in a double
Taylor series in powers of (x̄ ′ − x̄ ′′)k and x̄ ′n . Once more the dominant contribution comes
from the zeroth-order term, and we find that the second group of terms in Eq. (9.69) can be
approximated by −∑

A

∑
B �=A G2m Am B(r AB · sA)/(r3

ABsA).
Collecting results, we have that �5 is given by

�5 = −
∑

A

G�
jk
A ∂ jksA −

∑
A

∑
B �=A

G2m Am B
r AB · sA

r3
ABsA

+ · · · , (9.74)

or

�5 = −
∑

A

G�A

sA
+

∑
A

G�
jk
A

n Aj n Ak

sA
−

∑
A

∑
B �=A

G2m Am B
nAB · nA

r2
AB

+ · · · (9.75)

after using Eq. (9.50) to evaluate ∂ jksA.

Auxiliary potential�6

Equation (9.47f) becomes

�6 =
∑

A

G

[
v

j
Avk

A

∫
A
ρ∗′ (sA − x̄ ′) j (sA − x̄ ′)k

|sA − x̄′|3 d3 x̄ ′

+ 2v
j
A

∫
A
ρ∗′v̄′k (sA − x̄ ′) j (sA − x̄ ′)k

|sA − x̄′|3 d3 x̄ ′

+
∫

A
ρ∗′v̄′ j v̄′k (sA − x̄ ′) j (sA − x̄ ′)k

|sA − x̄′|3 d3 x̄ ′
]

(9.76)

after making the substitutions x′ = r A + x̄′ and v′ = vA + v̄′. In each integral we perform
the usual trick of expanding (sA − x̄ ′) j (sA − x̄ ′)k |sA − x̄′|−3 in powers of x̄ ′n . For the first
integral we find that the zeroth-order term gives the dominant contribution, that the linear
terms give rise to a vanishing integral, and that the quadratic terms can be neglected. For
the second integral we find that the zeroth-order term vanishes (because the integral is
odd in the number of internal vectors), that the first-order term vanishes by virtue of the
non-spinning condition of Eq. (9.29), and that the second-order term also vanishes (another
odd integral). And finally, the third integral is evaluated just as the first, and we retain only
the zeroth-order contribution.

The end result is

�6 = 2
∑

A

GT jk
A

n Aj n Ak

sA
+

∑
A

Gm A
(nA · vA)2

sA
+ · · · (9.77)
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Post-Newtonian potential	

Combining Eqs. (9.46), (9.61), (9.66), (9.67), (9.68), (9.75), and (9.77) we arrive at the
following expression for the post-Newtonian potential:

	 =
∑

A

G

sA

(
4TA + 5

2
�A + E int

A + 9

2
PA

)

− 1

2

∑
A

G

sA

(
2T jk

A + �
jk
A + δ jk PA

)
n Aj n Ak

+
∑

A

Gm A

sA

[
2v2

A − 1

2
(nA · vA)2

]

−
∑

A

∑
B �=A

G2m Am B

rABsA

(
1 − nAB · sA

2rAB

)
. (9.78)

This can be simplified. We note first that the second group of terms, involving the structure
tensors T jk

A , �
jk
A , and δ jk PA, vanishes by virtue of the equilibrium condition of Eq. (9.10).

On the other hand, according to Eq. (9.12) the first group of terms can be altered at will by
the insertion of any multiple of 2TA + �A + 3PA = 0; we exploit this freedom to eliminate
the PA term in the first sum. And finally, we use the identity

nAB · sA = s2
B − s2

A − r2
AB

2rAB
(9.79)

to alter the appearance of the double sum.
After implementing these changes, our final expression for 	 is

	 =
∑

A

G

sA

(
TA + �A + E int

A

)
+

∑
A

Gm A

sA

[
2v2

A − 1

2
(nA · vA)2

]

−
∑

A

∑
B �=A

G2m Am B

rABsA

5r2
AB + s2

A − s2
B

4r2
AB

. (9.80)

Note that the first sum, which features the only remaining terms that involve the structure
integrals, depends on the combination E A := TA + �A + E int

A ; this is the total energy of
body A, the sum of kinetic, gravitational, and internal energies.

9.2.3 At long last, the metric

We insert Eq. (9.55), (9.58), and (9.80) within the post-Newtonian metric of Eqs. (9.44).
The first group of terms in the post-Newtonian potential 	 combines with the Newtonian
potential U , and the combination gives rise to a contribution

2

c2

∑
A

G(m A + E A/c2)

sA
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to g00. This result implies that the Newtonian piece of the metric is naturally expressed in
terms of MA := m A + E A/c2, the total mass-energy of each body, as defined by Eq. (9.23).
Furthermore, the post-Newtonian terms also can be expressed in terms of MA, because
the difference between this and m A is of order c−2 and can be transferred to the (ne-
glected) 2pn terms. The conclusion is that the metric involves MA only, and is completely
insensitive to its decomposition in terms of material mass m A, kinetic energy TA, gravi-
tational potential energy �A, and internal energy E int

A . This conclusion was anticipated in
Sec. 9.1.6: the 1pn metric does indeed satisfy the strong formulation of the principle of
equivalence.

Our final expression for the metric is

g00 = −1 + 2

c2

∑
A

G MA

sA
+ 1

c4

∑
A

G MA

sA

[
4v2

A − (nA · vA)2 − 2
G MA

sA

]

− 1

c4

∑
A

∑
B �=A

G2 MA MB

sA

(
2

sB
+ 5

2rAB
+ s2

A − s2
B

2r3
AB

)
+ O(c−6), (9.81a)

g0 j = − 4

c3

∑
A

G MAv
j
A

sA
+ O(c−5), (9.81b)

g jk =
(

1 + 2

c2

∑
A

G MA

sA

)
δ jk + O(c−4). (9.81c)

We recall the notation

sA := x − r A(t), sA := |x − r A(t)|, nA := sA

sA
, (9.82)

as well as

rAB := |r A(t) − r B(t)|. (9.83)

And we recall that the mass-energy parameter MA was introduced in Eq. (9.23):

MA :=
∫

A
ρ∗

[
1 + 1

c2

(
1

2
v̄2 − 1

2
UA + �

)]
d3x + O(c−4), (9.84)

where v̄ := v − vA is the velocity field in the comoving frame of body A, and UA is the
internal gravitational potential. The mass-energy MA is a constant of the post-Newtonian
motion.

The metric of Eqs. (9.81) is valid outside each body, at a distance sA that is much larger
than each body radius RA. Only the leading terms are displayed, and our expressions leave
out terms that are suppressed by factors of order (RA/sA)2 � 1. They also leave out terms
that are contributed by the spin of each body, which was assumed to vanish; these will be
incorporated in Sec. 9.5. The metric is expressed in terms of the center-of-mass position
r A(t) and velocity vA(t) = d r A/dt of each body. These have not yet been determined, and
this shall be our task in the following section.
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9.3 Motion of isolated bodies

9.3.1 Strategy

To find equations of motion for the center-of-mass positions r A(t), we return to Eq. (9.5),
which we copy as

m AaA =
∫

A
ρ∗ dv

dt
d3x . (9.85)

Here m A := ∫
A ρ∗ d3x is the material mass of body A, aA := d2r A/dt2 is the coordinate

acceleration of its center-of-mass, and v is the fluid’s velocity field. The domain of inte-
gration VA is a time-independent region of three-dimensional space that extends beyond
the volume occupied by the body. As stated previously, it is sufficiently large that in a time
interval dt , the body will not cross the domain’s boundary SA; but it is sufficiently small
that VA does not include nor intersect another body within the system.

In this equation we insert the post-Newtonian Euler equation (8.119), which is derived
in Sec. 8.4.3. Taking into account Eq. (8.12), this gives rise to

m Aa j
A = F j

0 +
18∑

n=1

F j
n + O(c−4), (9.86)

where

F j
0 :=

∫
A

(−∂ j p + ρ∗∂ jU
)

d3x (9.87)

is the Newtonian contribution to the force acting on body A, while the eighteen terms that
make up the post-Newtonian contribution are

F j
1 := 1

2c2

∫
A
v2∂ j p d3x, (9.88a)

F j
2 := 1

c2

∫
A

U∂ j p d3x, (9.88b)

F j
3 := 1

c2

∫
A
�∂ j p d3x, (9.88c)

F j
4 := 1

c2

∫
A

p

ρ∗ ∂ j p d3x, (9.88d)

F j
5 := − 1

c2

∫
A
v j∂t p d3x, (9.88e)

F j
6 := 1

c2

∫
A
ρ∗v2∂ jU d3x, (9.88f)

F j
7 := − 4

c2

∫
A
ρ∗U∂ jU d3x, (9.88g)

F j
8 := − 3

c2

∫
A
ρ∗v j∂tU d3x, (9.88h)

(continued overleaf)
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F j
9 := − 4

c2

∫
A
ρ∗v jvk∂kU d3x, (9.88i)

F j
10 := 4

c2

∫
A
ρ∗∂tU

j d3x, (9.88j)

F j
11 := 4

c2

∫
A
ρ∗vk∂kU j d3x, (9.88k)

F j
12 := − 4

c2

∫
A
ρ∗vk∂ jUk d3x, (9.88l)

F j
13 := 2

c2

∫
A
ρ∗∂ j�1 d3x, (9.88m)

F j
14 := − 1

c2

∫
A
ρ∗∂ j�2 d3x, (9.88n)

F j
15 := 1

c2

∫
A
ρ∗∂ j�3 d3x, (9.88o)

F j
16 := 4

c2

∫
A
ρ∗∂ j�4 d3x, (9.88p)

F j
17 := − 1

2c2

∫
A
ρ∗∂ j�5 d3x, (9.88q)

F j
18 := − 1

2c2

∫
A
ρ∗∂ j�6 d3x . (9.88r)

The auxiliary potentials �n were introduced in Eqs. (8.8).
To evaluate the force integrals we rely on the techniques introduced in Sec. 9.1. We

assume that each body is reflection-symmetric about the center-of-mass (Sec. 9.1.2), so
that each variable (such as ρ∗, p, and �) that specifies its internal structure can be taken
to be invariant under the reflection x̄ → −x̄, where x̄ := x − r A(t) is the position of a
fluid element relative to the center-of-mass; this property allows us to eliminate all body
integrals that contain an odd number of internal vectors (such as x̄, v̄ := v − vA, or ∇ p).
We express our results in terms of the structure integrals introduced in Sec. 9.1.3, and
assume that the bodies are in dynamical equilibrium, so that Eqs. (9.10), (9.11), and (9.12)
are satisfied. We continue to assume that each body is non-spinning (Sec. 9.1.4), so that its
angular-momentum tensor S jk

A vanishes. We rely on the decomposition of all gravitational
potentials into internal and external pieces, as explained in Sec. 9.1.5. And finally, we
assume that the bodies are well separated (Sec. 9.1.4) and allow ourselves to neglect terms
that are suppressed by a factor of order (RA/rAB)2 relative to the leading-order contribution
to each force integral; here RA is the typical body radius and rAB := |r A − r B | the typical
inter-body distance.

We can exploit the condition RA � rAB to simplify expressions involving the external
potentials. The wide separation between bodies implies that when (say) the external potential
U¬A is evaluated within body A, it can be usefully expressed as the Taylor expansion

U¬A(t, x) = U¬A(t, r A) + x̄ j∂ jU¬A(t, r A) + 1

2
x̄ j x̄ k∂ jkU¬A(t, r A) + · · · , (9.89)
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where x̄ := x − r A. With respect to the leading term U¬A(t, r A), the linear term in
Eq. (9.89) is suppressed by a factor of order RA/rAB , while the quadratic term is smaller
by a factor of order (RA/rAB)2; according to the rules spelled out previously, this last term
can be discarded.

9.3.2 Results and sample computations

It would be exhausting (both for the reader and the authors) to present a detailed calculation
of each one of the nineteen force integrals F j

n . We shall instead state the results, and present
a small (but representative) sample of the calculations that are required to obtain these
results.

The individual contributions to the gravitational force are

F j
0 = m A∂ jU¬A(t, r A) (9.90)

and

c2 F j
1 = Lk j

A vk
A, (9.91a)

c2 F j
2 = −PA∂ jU¬A, (9.91b)

c2 F j
3 = 0, (9.91c)

c2 F j
4 = 0, (9.91d)

c2 F j
5 = −ṖAv

j
A + L jk

A vk
A, (9.91e)

c2 F j
6 = 2H k j

A vk
A + 2TA∂ jU¬A + m Av2

A∂ jU¬A, (9.91f)

c2 F j
7 = −4�

jk
A ∂kU¬A + 8�A∂ jU¬A − 4m AU¬A∂ jU¬A, (9.91g)

c2 F j
8 = 3H jk

A vk
A − 3HAv

j
A − 3m Av

j
A∂tU¬A, (9.91h)

c2 F j
9 = −4H jk

A vk
A − 4HAv

j
A − 8T jk

A ∂kU¬A − 4m Av
j
Avk

A∂kU¬A, (9.91i)

c2 F j
10 = 4H jk

A vk
A + 4HAv

j
A − 8�A∂ jU¬A + 4m A∂tU

j
¬A, (9.91j)

c2 F j
11 = −4H jk

A vk
A + 4HAv

j
A + 4m Avk

A∂kU j
¬A, (9.91k)

c2 F j
12 = −4m Avk

A∂ jU
k
¬A, (9.91l)

c2 F j
13 = −4H k j

A vk
A + 2m A∂ j�1,¬A, (9.91m)

c2 F j
14 = �

jk
A ∂kU¬A − m A∂ j�2,¬A, (9.91n)

c2 F j
15 = m A∂ j�3,¬A, (9.91o)

c2 F j
16 = 4m A∂ j�4,¬A, (9.91p)

c2 F j
17 = −�

jk
A ∂kU¬A + �A∂ jU¬A − 1

2
m A∂ j�5,¬A, (9.91q)

c2 F j
18 = −H jk

A vk
A − HAv

j
A + 3K jk

A vk
A − 1

2
m A∂ j�6,¬A. (9.91r)
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Here U¬A is a short-hand notation for U¬A(t, x = r A), with the rule extending to all other
external potentials. These are differentiated with respect to t and x j before being evaluated
at x = r A.

To illustrate the method of derivation we begin with the simplest case, the result of
Eq. (9.90), which is obtained from Eq. (9.87); these calculations were also presented back
in Sec. 1.6. The integral of ∂ j p over the three-dimensional domain VA can be expressed
as the surface integral

∮
SA

p d Sj , and this vanishes because the boundary surface SA lies
outside of body A. The integral of ∂ jU is handled by decomposing the Newtonian potential
as U = UA + U¬A. The first contribution to F j

0 is the self-interaction term
∫

A ρ∗∂ jUA d3x ,
which vanishes; this is the statement of Eq. (8.120a), adapted to the current situation in
which the integration extends over the volume occupied by body A. The sole contribution
to the Newtonian force is therefore F j

0 = ∫
A ρ∗∂ jU¬A d3x . In this we insert the Taylor

expansion of Eq. (9.89). The first term gives rise to Eq. (9.90). The second term vanishes,
because

∫
A ρ∗ x̄ j d3x = 0 by virtue of the definition of the center-of-mass position r A. The

third term gives rise to a contribution 1
2 I kn

A ∂ jknU¬A(t, r A) to the Newtonian force, and this
is smaller than the leading term by a factor of order (RA/rAB)2; we discard this as well as
all higher-order terms. Our final result is Eq. (9.90).

We next examine a more complicated example, the computation of F j
6 . Here again we

write U = UA + U¬A, and in addition we express the velocity field v as vA + v̄. This gives
rise to a sum of six terms,

c2 F j
6 = v2

A

∫
A
ρ∗∂ jUA d3x + 2vk

A

∫
A
ρ∗v̄k∂ jUA d3x +

∫
A
ρ∗v̄2∂ jUA d3x

+ v2
A

∫
A
ρ∗∂ jU¬A d3x + 2vk

A

∫
A
ρ∗v̄k∂ jU¬A d3x +

∫
A
ρ∗v̄2∂ jU¬A d3x .

(9.92)

The first integral vanishes, as was observed previously. In the second integral we insert
UA = G

∫
A ρ∗′|x − x′|−1 d3x ′ which we differentiate with respect to x j . The result is

−G

∫
A
ρ∗ρ∗′v̄k

(x̄ − x̄ ′) j

|x̄ − x̄′|3 d3 x̄ ′d3 x̄

after changing the variables of integration from x and x′ to x̄ := x − r A and x̄′ := x′ − r A.
This can be written as

+G

∫
A
ρ∗′ρ∗v̄′

k

(x̄ − x̄ ′) j

|x̄ − x̄′|3 d3 x̄d3 x̄ ′

by switching the identities of the integration variables (the old “switch trick”). This is
recognized as the structure integral H k j

A , and the second contribution to c2 F j
A is 2H k j

A vk
A.

The third integral vanishes, because it contains an odd number of internal vectors x̄, x̄′, and
v̄. In the fourth integral we insert the Taylor expansion of the external potential and retain
the leading term only; the fourth contribution to c2 F j

6 is m Av2
A∂ jU¬A(t, r A), plus terms

that are smaller than this by a factor of order (RA/rAB)2. In the fifth integral the Taylor
expansion gives rise to a leading term proportional to

∫
A ρ∗v̄k d3 x̄ , which vanishes by virtue
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of Eq. (9.4). The second term is proportional to
∫

A ρ∗v̄k x̄n d3 x̄ , which vanishes by virtue

of Eq. (9.29). We neglect the third term and conclude that the fifth contribution to c2 F j
6 is

negligible. And finally, the sixth integral produces the final contribution 2TA∂ jU¬A(t, r A)
to c2 F j

6 . Collecting results, we obtain the expression displayed in Eq. (9.91f).
As our final example we go through the computations that lead to Eq. (9.91n). After

decomposing �2 into internal and external pieces, we have that

c2 F j
14 = −

∫
A
ρ∗∂ j�2,A d3x −

∫
A
ρ∗∂ j�2,¬A d3x . (9.93)

In the second integral we substitute the Taylor expansion for �2,¬A, and this gives rise to
a contribution −m A∂ j�2,¬A(t, r A) to c2 F j

14. Working now on the first integral, we invoke
the definition of �2 from Eqs. (8.8) on page 374, decompose U ′ into internal and external
pieces, and write

∂ j�2,A = −G

∫
A
ρ∗′U ′

A

(x − x ′) j

|x − x′|3 d3x ′ − G

∫
A
ρ∗′U ′

¬A

(x − x ′) j

|x − x′|3 d3x ′. (9.94)

Making the substitution, we find that the first term produces a contribution

G

∫
A
ρ∗ρ∗′U ′

A

(x̄ − x̄ ′) j

|x̄ − x̄′|3 d3 x̄ ′d3 x̄ (9.95)

to c2 F j
14; this integral vanishes because it contains an odd number of internal vectors. The

second term produces

G

∫
A
ρ∗ρ∗′U ′

¬A

(x̄ − x̄ ′) j

|x̄ − x̄′|3 d3 x̄ ′d3 x̄, (9.96)

and in this we substitute the Taylor expansion for the external Newtonian potential. The
leading term gives rise to an odd integral, and the next term produces a contribution

∂kU¬A(t, r A) G

∫
A
ρ∗ρ∗′ x̄ ′k(x̄ − x̄ ′) j

|x̄ − x̄′|3 d3 x̄ ′d3 x̄ (9.97)

to c2 F j
14. By making use of the switch trick we re-express this as

−∂kU¬A(t, r A) G

∫
A
ρ∗′ρ∗ x̄ k(x̄ − x̄ ′) j

|x̄ − x̄′|3 d3 x̄d3 x̄ ′, (9.98)

and averaging the results produces the final expression

−1

2
∂kU¬A(t, r A) G

∫
A
ρ∗ρ∗′ (x̄ − x̄ ′) j (x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄ ; (9.99)

this is equal to �
jk
A ∂kU¬A(t, r A). The higher-order terms in the Taylor expansion can be

neglected, and collecting results, we have established Eq. (9.91n).
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9.3.3 Equations of motion (in terms of external potentials)

Substitution of Eqs. (9.90) and (9.91) into Eq. (9.86) returns

a j
A = 1

m Ac2

[(
2L ( jk)

A − 4H ( jk)
A + 3K jk

A − δ jk ṖA

)
vk

A

− 4
(
2T jk

A + �
jk
A + δ jk PA

)
∂kU¬A + (

2TA + �A + 3PA

)
∂ jU¬A

]

+ ∂ jU¬A + 1

c2

[(
v2

A − 4U¬A

)
∂ jU¬A − v

j
A

(
4vk

A∂kU¬A + 3∂tU¬A

)

− 4vk
A

(
∂ jU

k
¬A − ∂kU j

¬A

) + 4∂tU
j
¬A + ∂ j	¬A

]
+ O(c−4)

(9.100)

after some algebra and simplification. The self-interaction terms can all be eliminated by
taking into account the equilibrium conditions of Eqs. (9.10), (9.11), and (9.12), as well as
setting ṖA = 0. The equations of motion for body A reduce to

a j
A = ∂ jU¬A + 1

c2

[(
v2

A − 4U¬A

)
∂ jU¬A − v

j
A

(
4vk

A∂kU¬A + 3∂tU¬A

)

− 4vk
A

(
∂ jU

k
¬A − ∂kU j

¬A

) + 4∂tU
j
¬A + ∂ j	¬A

]
+ O(c−4).

(9.101)

The acceleration vector is currently expressed in terms of the external piece of the New-
tonian potential U , the vector potential U j , and the post-Newtonian potential 	; these are
evaluated at x = r A(t) after differentiation. The external post-Newtonian potential is given
by

	¬A = 2�1,¬A − �2,¬A + �3,¬A + 4�4,¬A − 1

2
�5,¬A − 1

2
�6,¬A (9.102)

in terms of the auxiliary external potentials �n,¬A. Our next task is to evaluate the external
potentials, and find their expressions as explicit functions of the positions r A and velocities
vA.

Before we proceed it is interesting to compare Eq. (9.101), which governs the motion of
body A among a system of N gravitating bodies, with the geodesic equation (8.16), which
determines the motion of a test mass in a pre-determined spacetime with gravitational
potentials U , U j , and 	. The equations are formally identical, and this allows us to
conclude that body A moves as if it were on a geodesic in a spacetime with gravitational
potentials U¬A, U j

¬A, and 	¬A. This conclusion rests on our assumptions that each body
is non-spinning and well separated from any other body, so that the effects of the higher-
order multipole moments (such as the quadrupole moment I jk

A and the angular-momentum
tensor S jk

A ) can be neglected in the equations of motion; inclusion of these effects would
produce deviations from geodesic motion. The conclusion must also be formulated with
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care, because the external potentials are not truly independent of body A; as we shall see,
the non-linear nature of the field equations implies that ∂tU

j
¬A and ∂ j�2,¬A depend on m A

in addition to all other, external masses.

9.3.4 Evaluation of the external potentials

Once again we shall state our results and go through the details of only a small subset
of computations. After evaluation at x = r A(t) we find that the derivatives of the external
potentials are given by

∂ jU¬A = −
∑
B �=A

Gm Bn j
AB

r2
AB

, (9.103a)

∂tU¬A =
∑
B �=A

Gm B(nAB · vB)

r2
AB

, (9.103b)

∂kU j
¬A = −

∑
B �=A

Gm Bv
j
Bnk

AB

r2
AB

, (9.103c)

∂tU
j
¬A =

∑
B �=A

G
(
2T jk

B + �
jk
B + δ jk PA

)nk
AB

r2
AB

+
∑
B �=A

Gm B(nAB · vB)v j
B

r2
AB

+
∑
B �=A

G2m Am Bn j
AB

r3
AB

−
∑
B �=A

∑
C �=A,B

G2m BmC n j
BC

rABr2
BC

, (9.103d)

∂ j�1,¬A = −
∑
B �=A

2GTBn j
AB

r2
AB

−
∑
B �=A

Gm Bv2
Bn j

AB

r2
AB

, (9.103e)

∂ j�2,¬A =
∑
B �=A

2G�Bn j
AB

r2
AB

−
∑
B �=A

G2m Am Bn j
AB

r3
AB

−
∑
B �=A

∑
C �=A,B

G2m BmC n j
AB

r2
ABrBC

, (9.103f)

∂ j�3,¬A = −
∑
B �=A

G E int
B n j

AB

r2
AB

, (9.103g)

∂ j�4,¬A = −
∑
B �=A

G PBn j
AB

r2
AB

, (9.103h)

∂ j�5,¬A = −
∑
B �=A

G�kn
B ∂ jknrAB

−
∑
B �=A

∑
C �=A,B

G2m BmC

rABr2
BC

[
n j

BC − (nAB · nBC )n j
AB

]
, (9.103i)

(continued overleaf)
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∂ j�6,¬A = −
∑
B �=A

2GT kn
B ∂ jknrAB −

∑
B �=A

2GTBn j
AB

r2
AB

+
∑
B �=A

Gm B(nAB · vB)

r2
AB

[
2v

j
B − 3(nAB · vB)n j

AB

]
. (9.103j)

Once more we have assumed that the bodies are well separated, and terms that are sup-
pressed by factors of order (RA/rAB)2 relative to the leading contributions have been freely
discarded. We make use of the notation introduced in Eq. (9.49),

r AB := r A − r B, rAB := |r A − r B |, nAB := r AB

rAB
, (9.104)

and ∂ jknrAB stands for the third derivative of the inter-body distance rAB with respect to
the vector r AB .

To illustrate how these results are obtained we begin with the simplest case, the evaluation
of ∂ jU¬A. Introducing the notation s := |x − x′|, we recall first that the Newtonian potential
is given by U = G

∫
ρ∗′s−1 d3x ′, so that ∂ jU = G

∫
ρ∗′∂ j s−1 d3x ′; the external piece of

this is

∂ jU¬A =
∑
B �=A

G

∫
B

ρ∗′∂ j s
−1 d3x ′. (9.105)

In this we substitute x′ = r B(t) + x̄′, so that s becomes s = |x − r B − x̄′|. We next expand
∂ j s−1 in powers of x̄ ′k :

∂ j s
−1 = ∂ j s

−1
B − x̄ ′k∂ jks−1

B + 1

2
x̄ ′k x̄ ′n∂ jkns−1

B + · · · , (9.106)

where sB := |x − r B |. Making the substitution in ∂ jU¬A, we find that it becomes

∂ jU¬A =
∑
B �=A

(
Gm B∂ j s

−1
B + 1

2
G I kn

B ∂ jkns−1
B + · · ·

)
. (9.107)

The term involving ∂ jks−1
B vanishes, because

∫
B ρ∗′ x̄ ′k d3x ′ = 0 by virtue of the definition

of the center-of-mass position rk
B . The term involving the quadrupole moment tensor is

smaller than the leading term by a factor of order (RB/sB)2, and we discard it. After
evaluation of ∂ j s

−1
B using Eqs. (9.50), we set x = r A(t) and arrive at Eq. (9.103a).

We next tackle a more complicated case, the evaluation of ∂tU
j
¬A. The vector potential is

U j = G
∫

ρ∗′v′ j s−1 d3x ′, and using the rules spelled out in Box 8.4, we find that its time
derivative is given by ∂tU j = G

∫
ρ∗′(dv′ j/dt + v′ jv′k∂k ′)s−1 d3x ′. In this we substitute

the Newtonian version of Euler’s equation, Eq. (8.104), and obtain

∂tU
j = −G

∫
(∂ j ′ p′)s−1 d3x ′ + G

∫
ρ∗′(∂ j ′U ′)s−1 d3x ′ − G

∫
ρ∗′v′ jv′k∂ks−1 d3x ′;

(9.108)
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in the last term we have made use of the identity ∂k ′s−1 = −∂ks−1, and our expression for
∂tU j is accurate up to terms of order c−2. The external piece of this is

∂tU
j
¬A = −

∑
B �=A

G

∫
B

(∂ j ′ p′)s−1 d3x ′ +
∑
B �=A

G

∫
B

ρ∗′(∂ j ′U ′)s−1 d3x ′

−
∑
B �=A

G

∫
B

ρ∗′v′ jv′k∂ks−1 d3x ′. (9.109)

We initially examine the first group of terms. We substitute x′ = r B(t) + x̄′ inside the
integral and expand s−1 in powers of x̄ ′k ; it becomes

s−1
B

∫
B

∂ j ′ p′ d3 x̄ ′ − ∂ks−1
B

∫
B

x̄ ′k∂ j ′ p′ d3 x̄ ′ + 1

2
∂kns−1

B

∫
B

x̄ ′k x̄ ′n∂ j ′ p′ d3 x̄ ′ + · · · (9.110)

The first integral vanishes automatically, the third vanishes because it contains an odd
number of internal vectors, and after integration by parts the second integral returns −δ jk PB .
The first group of terms in Eq. (9.109) is therefore

−
∑
B �=A

G

∫
B

(∂ j ′ p′)s−1 d3x ′ =
∑
B �=A

G PB∂ j s
−1
B , (9.111)

after discarding contributions that are smaller by a factor of order (RB/sB)2.
We turn next to the second group of terms in Eq. (9.109), in which we insert ∂ j ′U ′ =

∂ j ′U ′
A + ∂ j ′U ′

B + ∑
C �=A,B ∂ j ′U ′

C . The integral that involves ∂ j ′U ′
A = G

∫
A ρ∗′′∂ j ′s ′−1 d3x ′′

is

G

∫
B

∫
A
ρ∗′ρ∗′′s−1∂ j ′s ′−1 d3x ′′d3x ′, (9.112)

where s ′ := |x′ − x′′|. In this we substitute x′ = r B + x̄′, x′′ = r A + x̄′′ and express
s−1∂ j ′s ′−1 as a double Taylor expansion in powers of x̄ ′k and x̄ ′′n . Only the leading term is
required, and we arrive at

G

∫
B

ρ∗′(∂ j ′U ′
A)s−1 d3x ′ = G2m Am Bs−1

B ∂ j ′r−1
AB, (9.113)

in which ∂ j ′ is interpreted as a partial derivative with respect to r j
B . The integral that involves

∂ j ′U ′
C is evaluated in the same way, and we get

G

∫
B

ρ∗′(∂ j ′U ′
C )s−1 d3x ′ = G2m BmC s−1

B ∂ j ′r−1
BC . (9.114)

The integral that involves ∂ j ′U ′
B is

− G

∫
B

ρ∗′ρ∗′′s−1 (x ′ − x ′′) j

|x′ − x′′|3 d3x ′′d3x ′, (9.115)

and in this we substitute x′ = r B + x̄′ and x′′ = r B + x̄′′. We expand s = |x − r B − x̄′|
in powers of x̄ ′k , eliminate all odd integrals, and get

G∂ks−1
B

∫
B

ρ∗′ρ∗′′ x̄ ′k(x̄ ′ − x̄ ′′) j

|x̄′ − x̄′′|3 d3 x̄ ′′d3 x̄ ′. (9.116)
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After symmetrization in the primed and double-primed variables, we arrive at

G

∫
B

ρ∗′(∂ j ′U ′
B)s−1 d3x ′ = −G�

jk
B ∂ks−1

B . (9.117)

Collecting results, we find that the second group of terms in Eq. (9.109) is∑
B �=A

G

∫
B

ρ∗′(∂ j ′U ′)s−1 d3x ′ = −
∑
B �=A

G�
jk
B ∂ks−1

B +
∑
B �=A

G2m Am Bs−1
B ∂ j ′r−1

AB

+
∑
B �=A

∑
C �=A,B

G2m BmC s−1
B ∂ j ′r−1

BC . (9.118)

We recall that in the second and third sums, ∂ j ′ is interpreted as a partial derivative with
respect to r j

B .
We finally examine the third group of terms in Eq. (9.109). Here the manipulations

are simple: we insert x′ = r B + x̄′, v′ = vB + v̄′ and expand ∂ks−1 in powers of x̄ ′n . We
quickly arrive at

−
∑
B �=A

G

∫
B

ρ∗′v′ jv′k∂ks−1 d3x ′ = −
∑
B �=A

2GT jk
B ∂ks−1

B −
∑
B �=A

Gm Bv
j
Bvk

B∂ks−1
B . (9.119)

Substitution of Eqs. (9.111), (9.118), and (9.119) into Eq. (9.109) returns Eq. (9.103d),
after computation of the derivatives of sB , rAB , and rBC and evaluation of all expressions
at x = r A(t).

9.3.5 Equations of motion (final form)

When Eqs. (9.103) are inserted within Eqs. (9.101) and (9.102), we finally obtain an explicit
expression for a j

A, the coordinate acceleration of body A. It can be decomposed as

aA = aA[0pn] + aA[1pn] + aA[str] + O(c−4), (9.120)

where

aA[0pn] = −
∑
B �=A

Gm B

r2
AB

nAB (9.121)

is the Newtonian acceleration, while

c2aA[1pn] = −
∑
B �=A

Gm B

r2
AB

[
v2

A − 4(vA · vB) + 2v2
B − 3

2
(nAB · vB)2

− 5Gm A

rAB
− 4Gm B

rAB

]
nAB

+
∑
B �=A

Gm B

r2
AB

[
nAB · (4vA − 3vB)

]
(vA − vB)

+
∑
B �=A

∑
C �=A,B

G2m BmC

r2
AB

[
4

rAC
+ 1

rBC
− rAB

2r2
BC

(nAB · nBC )

]
nAB

− 7

2

∑
B �=A

∑
C �=A,B

G2m BmC

rABr2
BC

nBC (9.122a)

is the post-Newtonian piece of the acceleration vector.
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The third contribution aA[str] is generated by the structure-integral terms that are
scattered throughout Eqs. (9.103); it is given by

c2a j
A[str] =

∑
B �=A

[
4G

(
2T jk

B + �
jk
B + δ jk PB

)nk
AB

r2
AB

+ 1

2
G

(
2T kn

B + �kn
B + δkn PB

)
∂ jknrAB

− G
(
2TB + �B + 3PB

)n j
AB

r2
AB

− G EB

r2
AB

n j
AB

]
, (9.123)

where EB := TB + �B + E int
B is the total energy contained in body B, the sum of kinetic,

gravitational, and internal energies. To obtain this expression we added 1
2 Gδkn PB∂ jknrAB to

the second group of terms and subtracted the same thing, 1
2 G PB∂ jkkrAB = −PBn j

AB/r2
AB

from the third group. Most of a j
A[str] vanishes after imposing the equilibrium conditions

of Eqs. (9.10) and (9.12); what survives is

aA[str] = −
∑
B �=A

G(EB/c2)

r2
AB

nAB, (9.124)

and this makes a contribution to the acceleration at 1pn order.
We observe that a[0pn] and a[str] combine nicely to give

a[0pn] + a[str] = −
∑
B �=A

G MB

r2
AB

nAB, (9.125)

where

MB := m B + EB/c2 + O(c−4) (9.126)

is the total mass-energy of body B. And we observe that the substitution m B = MB +
O(c−2) can be made in aA[1pn] without altering the form of the equations of motion
at 1pn order. Our conclusion is that the equations of motion, like the inter-body metric
of Eqs. (9.81), depend on the total mass-energy parameters MB only, and not on their
decomposition in terms of material mass m B , kinetic energy TB , gravitational potential
energy �B , and internal energy E int

B . The equations of motion, like the inter-body metric,
are compatible with the strong formulation of the principle of equivalence.

Our final expression for the equations of motion is

aA = −
∑
B �=A

G MB

r2
AB

nAB

+ 1

c2

⎧⎪⎪⎪⎩−
∑
B �=A

G MB

r2
AB

[
v2

A − 4(vA · vB) + 2v2
B − 3

2
(nAB · vB)2

− 5G MA

rAB
− 4G MB

rAB

]
nAB

(continued overleaf)
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+
∑
B �=A

G MB

r2
AB

[
nAB · (4vA − 3vB)

]
(vA − vB)

+
∑
B �=A

∑
C �=A,B

G2 MB MC

r2
AB

[
4

rAC
+ 1

rBC
− rAB

2r2
BC

(nAB · nBC )

]
nAB

− 7

2

∑
B �=A

∑
C �=A,B

G2 MB MC

rABr2
BC

nBC

⎫⎪⎪⎪⎭ + O(c−4). (9.127)

We recall our notation: r A(t) is the position of body A in harmonic coordinates, vA(t) :=
d r A/dt is its velocity, and aA := dvA/dt is the coordinate acceleration. The vector r AB :=
r A − r B points from body B to body A; its length rAB := |r A − r B | is the inter-body
distance, and nAB := r AB/rAB .

The equations of motion (9.127) apply to each body A within the N -body system. The
bodies are assumed to be non-spinning and sufficiently well separated that the effects of
higher-order multipole moments can be ignored. These equations have a rich history that
was well summarized by Peter Havas in a 1989 essay. The equations were first formulated
in 1917 by Lorentz and Droste, who published their results in Dutch in a communication
to the Dutch Academy; their breakthrough remained unnoticed by the few researchers
involved in the early development of general relativity. The equations of motion were also
obtained at about the same time by de Sitter, who made use of the post-Newtonian metric
previously derived by Droste, and postulated that the bodies should move on geodesics of
the external metric; because of a calculational error, de Sitter’s equations differed from the
correct post-Newtonian equations by one term, and led to the wrong prediction that the
system’s barycenter should undergo a secular acceleration. The error was discovered and
corrected in 1938 by Eddington and Clark (the twenty-year delay indicating the low level
of activity in general relativity at the time), and in the same year a new derivation of the
equations of motion was produced by Einstein, Infeld, and Hoffmann. In spite of the much
earlier work of Lorentz and Droste, which eventually came to light thanks to an English
translation published in 1937, the equations became known as the EIH equations of motion.

9.3.6 Conserved quantities

In Secs. 8.4.5, 8.4.6, and 8.4.7 we established the existence of conserved quantities associ-
ated with the dynamics of a perfect fluid in a post-Newtonian spacetime. We identified

M :=
∫

ρ∗
[

1 + 1

c2

(1

2
v2 − 1

2
U + �

)]
d3x + O(c−4) (9.128)

as the total mass-energy of the fluid system,

P j :=
∫

ρ∗v j

[
1 + 1

c2

(1

2
v2 − 1

2
U + � + p/ρ∗

)]
d3x − 1

2c2

∫
ρ∗� j d3x + O(c−4)

(9.129)
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as the total momentum, with � j defined by

� j := G

∫
ρ∗′v′

k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′, (9.130)

and

R j := 1

M

∫
ρ∗x j

[
1 + 1

c2

(1

2
v2 − 1

2
U + �

)]
d3x + O(c−4) (9.131)

as the position of the center-of-mass for the entire fluid system. The total mass-energy and
momentum are constants of the fluid’s motion; the position of the center-of-mass satisfies
M Ṙ j = P j .

The conserved quantities keep their usefulness when the fluid distribution is broken up
into a collection of N separated bodies. In this case the integrals of Eqs. (9.128), (9.129),
and (9.131) become a sum of N individual integrals, and the conserved quantities become

M =
∑

A

MA + 1

c2

∑
A

1

2
MAv2

A − 1

c2

∑
A

∑
B �=A

G MA MB

2rAB
+ O(c−4), (9.132a)

P =
∑

A

MAvA + 1

c2

∑
A

1

2
MAv2

AvA

− 1

c2

∑
A

∑
B �=A

G MA MB

2rAB

[
vA + (nAB · vA)nAB

]
+ O(c−4), (9.132b)

M R =
∑

A

MA r A + 1

c2

∑
A

1

2
MAv2

A r A − 1

c2

∑
A

∑
B �=A

G MA MB

2rAB
r A + O(c−4). (9.132c)

As usual the expressions of Eqs. (9.132) apply to bodies that are well separated; terms
of fractional order (RA/rAB)2 have been neglected. It is straightforward (though tedious)
to show directly that d M/dt = 0, d P/dt = 0, and Md R/dt = P by virtue of the post-
Newtonian equations of motion. The expression for M reveals that the total mass-energy
of the N -body system consists of a sum of mass-energies from each body, plus the total
kinetic energy of the system (divided by c2), plus the total gravitational potential energy of
the system (also divided by c2).

To derive these results we rely on the techniques introduced in the preceding subsections.
Starting from Eq. (9.128) we find that the total mass-energy is given by

M =
∑

A

(∫
A
ρ∗ d3x + 1

2c2

∫
A
ρ∗v2 d3x − 1

2c2

∫
A
ρ∗U d3x + 1

c2

∫
A
ρ∗� d3x

)

+ O(c−4). (9.133)

The ρ∗ integral gives m A, the ρ∗v2 integral produces m Av2
A + 2TA after expressing v as

vA + v̄, and the ρ∗� integral gives E int
A . In the ρ∗U integral we write U = UA + U¬A and

observe that the first term produces −2�A, while the second term gives m AU¬A(t, r A)
after substitution of the Taylor expansion for the external potential; it is here that
terms of fractional order (RA/rAB)2 are discarded. Collecting results, and noting that
m A + (TA + �A + E int

A )/c2 = MA, we arrive at Eq. (9.132a) after making the substitution
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m A = MA + O(c−2) in the post-Newtonian terms. The derivation of Eq. (9.132c) proceeds
in exactly the same way, and there is no need to go through the details here.

Equation (9.129) implies that the total momentum of the N -body system is given by

P j =
∑

A

(∫
A
ρ∗v j d3x + 1

2c2

∫
A
ρ∗v2v j d3x − 1

2c2

∫
A
ρ∗Uv j d3x

+ 1

c2

∫
A
ρ∗�v j d3x + 1

c2

∫
A

pv j d3x − 1

2c2

∫
A
ρ∗� j d3x

)

+ O(c−4). (9.134)

The first four integrals are evaluated as we did previously, and the fifth integral produces
PAv

j
A. In the sixth and final integral we decompose � j as �

j
A + �

j
¬A. The internal piece

produces −2�
jk
A vk

A, and the external piece gives m A�
j
¬A(t, r A) after Taylor expansion of

the external potential. From Eq. (9.130) we get

�
j
¬A :=

∑
B �=A

G

∫
B

ρ∗′v′
k

(x − x ′) j (x − x ′)k

|x − x′|3 d3x ′, (9.135)

and in this we substitute x′ = r B + x̄′ and v′ = vB + v̄′. To leading order in an expansion
in powers of x̄ ′ j , we find that �

j
¬A(t, r A) = ∑

B �=A Gm B(nAB · vB)n j
AB/rAB . Collecting

results, we have that

P j =
∑

A

[
m A + 1

c2

(
TA + �A + E int

A

)]
v

j
A + 1

c2

∑
A

(
2T jk

A + �
jk
A + δ jk PA

)
vk

A

+ 1

c2

∑
A

1

2
m Av2

Av
j
A − 1

c2

∑
A

∑
B �=A

Gm Am B

2rAB

[
v

j
A + (nAB · vB)n j

AB

]

+ O(c−4). (9.136)

In the first group of terms we recognize m A + E A/c2 = MA, and we eliminate the second
group by invoking the equilibrium condition of Eq. (9.10). In the remaining groups we
insert m A = MA + O(c−2), and in the last step we rearrange the double sum that gives rise
to the last group: We switch the identities of bodies A and B and re-express the sums as

∑
B

∑
A �=B

G MB MA

2rB A
(nB A · vA)n j

B A; (9.137)

because nB A = −nAB and rB A = rAB , this is
∑

A

∑
B �=A

G MA MB

2rAB
(nAB · vA)n j

AB, (9.138)

and we have arrived at Eq. (9.132b).

9.3.7 Binary systems

The equations obtained in the preceding subsections apply to any number of well-separated
bodies. To conclude this section we examine the special case N = 2, that is, the case of a
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binary system. In the Newtonian context reviewed in Sec. 1.6.7, we saw that the description
of the motion simplified when the origin of the coordinate system was attached to the
barycenter R, and that the position of each body could be determined in terms of the
separation vector. The same simplification occurs in the post-Newtonian context.

The binary system consists of a first body of mass-energy M1, position r1, and velocity
v1, and a second body of mass-energy M2, position r2, and velocity v2. To simplify the
notation we introduce the mass parameters

m := M1 + M2, η := M1 M2

(M1 + M2)2
, � := M1 − M2

M1 + M2
, (9.139)

so that m is a kind of total mass, η a symmetric mass ratio, and � a dimensionless
measure of the mass difference; it should be noted that m differs from the total mass-energy
M introduced in Eq. (9.132) by terms of order c−2. We introduce also the separation r :=
r1 − r2, the relative velocity v := v1 − v2, and we shall set r := |r| = r12, n := r/r = n12,
and v := |v|.

According to Eq. (9.132), the position of the system’s barycenter is given by

M R = M1

[
1 + 1

2c2

(
v2

1 − G M2

r

)]
r1 + M2

[
1 + 1

2c2

(
v2

2 − G M1

r

)]
r2, (9.140)

and we wish to impose the condition R = 0. This allows us to solve for r1 and r2 in terms
of r , and the result is

r1 = M2

m
r + η�

2c2

(
v2 − Gm

r

)
r, (9.141a)

r2 = − M1

m
r + η�

2c2

(
v2 − Gm

r

)
r. (9.141b)

These equations imply that v1 = (M2/m)v + O(c−2) and v2 = −(M1/m)v + O(c−2).
An equation of motion for r can be obtained by computing the relative acceleration

a := a1 − a2 from Eq. (9.127). Taking into account that n21 = −n12 = −n, the final result
after simplification is

a = −Gm

r2
n − Gm

c2r2

{[
(1 + 3η)v2 − 3

2
η(n · v)2 − 2(2 + η)

Gm

r

]
n

− 2(2 − η)(n · v)v

}
+ O(c−4). (9.142)

This is a second-order differential equation for r(t), and its solution provides, through r1

and r2, complete information regarding the motion of the binary system.

9.4 Motion of compact bodies

The post-Newtonian equations of motion (9.127) apply to fluid bodies that are well separated
from one another, so that their mutual gravitational interaction is weak. The method of
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derivation relied on the post-Newtonian fluid equations, and these rest on an assumption
that the self-gravity of each body is also weak. In this context, therefore, the gravitational
field is assumed to be weak everywhere. In this section we examine a different context in
which we retain the weakness of the mutual gravity between bodies, but allow each body
to be strongly self-gravitating. We demonstrate that Eq. (9.127) continues to apply in these
situations.

In the new context the bodies can be arbitrarily compact, and can possess an arbitrarily
strong internal gravitational field. The bodies are not necessarily built from a perfect fluid,
and indeed, we shall have no interest in their internal constitution. The only assumption
concerning them shall be that they are spherically symmetric – a restrictive assumption that
was not made in the fluid case. Each body may thus be a neutron star, a black hole, or any
other object with strong internal gravity; it may still be, of course, a diffuse perfect-fluid
body with weak internal gravity. We maintain, however, the requirement that the bodies
be well separated, so that gravity is allowed to be weak between the bodies; it is in these
inter-body regions that the post-Newtonian metric provides a good approximation to the
true gravitational field.

We shall focus our attention on the vacuum region external to one of the compact bodies,
and our new derivation of its equations of motion will be based entirely on solving the
Einstein field equations in this region. Matter variables never enter this discussion. Our
strategy is based instead on the transformation between the inertial frame of the post-
Newtonian spacetime and the moving frame of the compact body. To describe this we rely
on the theory of post-Newtonian coordinate transformations that was developed back in
Sec. 8.3; please refer to the summary provided in Box 8.2. We follow the treatment provided
in the 2008 article by Taylor and Poisson; the paper offers additional details that are not
covered in this briefer treatment.

9.4.1 Zones andmatching strategy

We select one of the compact bodies as our reference body, and we henceforth refer to
it as “the body.” We introduce three distinct zones in spacetime (see Fig. 9.1). The first
is the body zone, the body’s immediate neighborhood; in the body zone the gravitational
field is dominated by the body’s own field, and the contribution from external bodies is
small. If r̄ is the distance from the body’s center-of-mass, then the body zone is defined by
r̄ < rmax, with rmax � rAB marking the zone’s boundary; rAB is the inter-body distance, and
the condition r̄ � rAB ensures that the external gravity is indeed small. The second zone
is the post-Newtonian zone, in which gravity is weak everywhere. The outer boundary of
the post-Newtonian zone coincides with the boundary of the near zone, as was discussed in
Sec. 8.1. The inner boundary is a sphere of radius r̄ = rmin, within which the body’s gravity
becomes strong; we demand that rmin � G M/c2, where M is the body mass. When the
bodies are well separated we have that G M/c2 � rAB , and we can ensure that rmin < rmax.
The region rmin < r̄ < rmax is the overlap zone, the intersection between the body and
post-Newtonian zones.

Our strategy behind the new derivation of the equations of motion is based on the
following key idea: We construct independently two solutions to the vacuum field equations
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r̄ = rmax

r̄ = rmin

Fig. 9.1 Body, post-Newtonian, and overlap zones. The compact body is shown in black. The body zone is shown in wavy
texture, and is restricted by r̄ < rmax � r AB, where r̄ is the distance to the body. The post-Newtonian zone is tinted,
and is restricted by r̄ > rmin � GM/c2. The overlap zone is shown in both wavy texture and tint, and is restricted by
rmin < r̄ < rmax.

in two overlapping regions of spacetime, and we match these solutions in the overlap; the
equations of motion follow as an outcome of the matching procedure. The first solution is
constructed in the body zone, in the body’s comoving frame, and the metric is presented in
harmonic coordinates (ct̄, x̄ j ) that are attached to the body’s center-of-mass. The second
solution is constructed in the post-Newtonian zone, in the global inertial frame, and the
metric is presented in a different set of harmonic coordinates (ct, x j ) that are attached to the
center-of-mass of the entire N -body system. To match the solutions in the overlap zone we
must first reconcile the coordinate systems, and we therefore transform the post-Newtonian
metric from the global coordinates (ct, x j ) to the body coordinates (ct̄, x̄ j ). We next
compare the post-Newtonian metric to the body metric, and demand that they agree. The
matching procedure determines (i) unknown functions within each metric, (ii) unknown
functions within the coordinate transformation, and finally, (iii) the body’s equations of
motion.

9.4.2 Body metric

We wish to find the metric of a spherical body placed in the presence of remote external
bodies. The metric will be presented in harmonic coordinates (ct̄, x̄ j ), in the body’s own
moving frame, and it will be valid in the body zone, in which r̄ � rAB . We do not need the
metric inside the body, and indeed, the details of internal structure are entirely irrelevant for
our purposes. If the body were in complete isolation, its external metric would be given by
the Schwarzschild solution of Eq. (5.171) – refer to Sec. 5.6. What we need here, however, is
a perturbed version of this metric that accounts for the weak gravity created by the external
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bodies. We state without proof that the time-time component of this perturbed metric is
given by

g0̄0̄ = −1 − R/2r̄

1 + R/2r̄
− 1

c2
(1 − R/2r̄ )2E jk x̄ j x̄ k, (9.143)

where R := 2G M/c2 is the Schwarzschild radius associated with the body mass M , and
E jk(t̄) is an arbitrary STF tensor that cannot be determined by solving the vacuum field
equations in the body zone only. This metric is valid in the interval Rbody < r̄ < rmax, where
Rbody is the body’s radius.

The perturbation terms in Eq. (9.143) have a quadrupolar structure, and they grow as
r̄2 when r̄ � R; this is precisely the behavior that we expect from a tidal field. This can
be seen most easily by evaluating the metric in the overlap zone (G M/c2 � r̄ � rAB), in
which it can be expanded in powers of c−2. The Newtonian piece of the body metric is
given by

Ū = G M

r̄
− 1

2
E jk x̄ j x̄ k, (9.144)

and we may compare this with Eq. (2.261) or with Eq. (8.73). The comparison reveals that
E jk(t̄) = −∂ jkUext(t̄, r), with r(t̄) denoting the body’s position, and that the second term
in Eq. (9.144) is the leading term in an expansion of the external potential in powers of
x̄ j . The tensor E jk(t̄) therefore characterizes the body’s tidal environment, and Eq. (9.143)
neglects higher-order terms in the expansion of the tidal potential.

The metric neglects other terms as well. A spherical body subjected to tidal forces
normally suffers a deformation, but this effect was not included in Eq. (9.143). As we
learned back in Sec. 2.5.1, the deformation is measured by the quadrupole-moment tensor
I〈 jk〉, and dimensional analysis requires a relationship of the form G I〈 jk〉 = − 2

3 k2 R5
bodyE jk ,

in which k2 is the body’s gravitational Love number, which depends on the details of its
internal structure. The quadrupole-moment term in Ū would decay as r̄−3, and would be
of fractional order (Rbody/r̄ )5 relative to the tidal term; we choose to neglect it in Ū , and
choose to neglect it in g0̄0̄ also, recalling that our accuracy requirements were more modest
in the preceding sections.

We shall not be interested in tidal effects in the following considerations, and for our
purposes it is sufficient to know that in the overlap zone, the Newtonian piece of the body
metric is given by Ū = G M/r̄ + O(r̄2). Similarly, we need to know that the post-Newtonian
piece obtained from Eq. (9.143) is given by 	̄ − Ū 2 = −G2 M2/r̄2 + O(r̄2), so that

	̄ = O(r̄2). (9.145)

We shall not require the time–space components of the metric, apart from the knowledge
that they contain tidal terms only; from this we infer that

Ū j = O(r̄2). (9.146)

And we shall not need the space–space components of the metric; for our purposes they
provide only redundant information.
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Our derivation of the equations of motion relies on the expression of Eq. (9.143) for
the body metric, and we present it here without a derivation. The result is based on a
straightforward application of gravitational perturbation theory applied to spherical bodies,
but to go through the details of its construction would take us too far afield. Some key
points, however, are worth a mention. The unperturbed metric is given by the Schwarzschild
solution, and its spherical symmetry guarantees that once a (linear) perturbation field is
decomposed into spherical harmonics, each mode decouples from any other mode. The
metric perturbation of Eq. (9.143) is a pure quadrupole field (� = 2), as can be seen from
the fact that it is generated by a second-rank STF tensor E jk(t̄). It can be shown that there
is no non-trivial monopole field (� = 0) in vacuum (a trivial field would correspond to a
meaningless shift in the mass parameter), and the statement that the dipole field (� = 1)
vanishes amounts to making a specific choice of center-of-mass position for the body. It is
therefore the quadrupole field that describes the leading-order tidal effects, and higher-order
multipole fields correspond to higher-order terms in the Taylor expansion of the external
Newtonian potential; we neglect these additional terms.

We make a final remark before moving on: the Newtonian potential of Eq. (9.144) is
expressed in terms of M , the mass parameter of the Schwarzschild metric. This is the
body’s total mass-energy, which in principle could be expressed in exact relativistic form in
terms of the material mass and all relevant forms of energy. Our current convention for the
Newtonian potential is therefore different from our previous usage, in which U accounted
for the material mass m only, while 	 accounted for the body’s energy E . Here we let the
Newtonian potential account for the body’s total mass-energy, and as a result, the expected
energy terms do not appear within the post-Newtonian potential of Eq. (9.145).

9.4.3 Post-Newtonian metric

Gravity is weak everywhere in the post-Newtonian zone, and here we may express the
metric as the post-Newtonian expansion

g00 = −1 + 2

c2
U + 2

c4
(	 − U 2) + O(c−4). (9.147)

The metric is presented in the global inertial frame, in harmonic coordinates (ct, x j )
attached to the center-of-mass of the entire N -body system. The post-Newtonian zone
coincides with the near zone, but it excludes a sphere of radius r̄ = rmin centered on the
body; rmin is chosen to be much larger than G M/c2 to ensure that gravity does not get too
strong as we approach the body.

In the overlap zone (G M/c2 � rmin < r̄ < rmax � rAB) the post-Newtonian metric must
satisfy the vacuum field equations. According to Eqs. (8.24), the gravitational potentials
must be solutions to ∇2U = 0, ∇2U j = 0, ∇2ψ = 0, and ∇2 X = 2U ; the post-Newtonian
potential is 	 = ψ + 1

2∂t t X . The solutions must contain the information that a compact
body is situated at x = r(t), and that external bodies are to be found outside the overlap
zone. We model the body as a post-Newtonian monopole (an assumption that is justified
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by the matching procedure to be carried out later), and we write

U = G M

s
+ Uext, (9.148a)

U j = G Mv j

s
+ U j

ext, (9.148b)

ψ = G Mμ

s
+ ψext, (9.148c)

X = G Ms + Xext, (9.148d)

where s := |x − r(t)| is the length of the vector s := x − r(t). We have introduced
v(t) := d r/dt as the body’s velocity, and its presence in the vector potential is required
by the harmonic gauge condition, ∂tU + ∂ jU j = 0. The quantity μ(t) is a post-Newtonian
correction to the mass parameter M , and this cannot be determined by solving the field
equations in the post-Newtonian zone only. The external potentials separately satisfy the
vacuum field equations. From Eq. (9.148) we get

	 = G M

s

[
μ + 1

2
v2 − 1

2
(n · v)2

]
− 1

2
G Mn · a + 	ext, (9.149)

where n := s/s and 	ext = ψext − 1
2∂t t Xext. We have also introduced a(t) := dv/dt as the

body’s acceleration, and this is the quantity that we wish to determine.
Notice that the body potentials are all singular at x = r(t); this is to be expected from a

monopole field. The singularity, however, is not physical – the body is not a point mass, but
a fully extended object. The singularity is also only apparent, because the point x = r(t)
lies outside the post-Newtonian zone; the potentials are valid for s � G M/c2 only.

9.4.4 Transformation to the comoving frame

The coordinate transformation from the inertial system (ct, x j ) to the comoving system
(ct̄, x̄ j ) is described in Box 8.2. It is characterized by a number of free functions that
must be determined in the course of the matching procedure. The most important piece of
information is the vector r(t̄), which determines the position of the body. The transformation
also involves A(t̄), H j (t̄), R j (t̄), and the harmonic function γ (t̄, x̄ j ).

The first step is to construct the “hatted potentials,” the original gravitational potentials
evaluated at time t = t̄ and position x = x̄ + r(t̄). From Eqs. (9.148) and (9.149) we get

Û = G M

r̄
+ Ûext, (9.150a)

Û j = G Mv j

r̄
+ Û j

ext, (9.150b)

	̂ = G M

r̄

[
μ + 1

2
v2 − 1

2
(n̄ · v)2

]
− 1

2
G M n̄ · a + 	̂ext, (9.150c)

where v, μ, and a are now functions of t̄ , and n̄ := x̄/r̄ .
The transformed potentials Ū , Ū j , and 	̄ will contain terms that are singular in the

formal limit r̄ → 0, and terms that are well-behaved in this limit. The external potentials
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contribute non-singular terms, and as usual it is convenient to express them as Taylor
expansions in powers of x̄ j . We write, for example,

Ûext(t̄, x̄) = Ûext(t̄, 0) + x̄ j∂ j Ûext(t̄, 0) + 1

2
x̄ j x̄ k∂ jkÛext(t̄, 0) + · · · (9.151)

The harmonic function γ also contributes non-singular terms, and we also express it as a
Taylor expansion:

γ (t̄, x̄) = C(t̄) + γ j (t̄)x̄
j + 1

2
γ jk(t̄)x̄ j x̄ k + · · · ; (9.152)

here C(t̄) and γ j (t̄) are arbitrary functions of time t̄ , and γ jk(t̄) is an arbitrary STF tensor
(so that γ can be a solution to Laplace’s equation).

For our purposes here it is useful to refine the notation of Box 8.2 and decompose the
acceleration vector a(t̄) into Newtonian and post-Newtonian pieces. We write

a = a[0pn] + a[1pn] + O(c−4), a[1pn] =: c−2α, (9.153)

and re-express the transformation of the Newtonian potential as

Ū = Û − Ȧ + 1

2
v2 − a j [0pn]x̄ j . (9.154)

The missing piece involving a[1pn] is transferred to the post-Newtonian potential 	̄. This
has the effect of altering the expression of G j by an additional term −α j .

A lengthy computation reveals that the transformed potentials are given by

Ū = G M

r̄
+ 0U + 1U j x̄ j + · · · , (9.155a)

Ū j = 0U
j + 1U

j
k x̄k + · · · , (9.155b)

	̄ = −G M

r̄3

(
Hj − Av j

)
x̄ j + G M

r̄

(
μ + Ȧ − 2v2

) + 0	 + 1	 j x̄ j + · · · , (9.155c)

with

0U = 1

2
v2 − Ȧ + Ûext, (9.156a)

1U j = −a j [0pn] + ∂j̄ Ûext, (9.156b)

0U
j = Û j

ext − v j Ûext + 1

4
(2 Ȧ − v2)v j − 1

4
Ḣ j + 1

4
ε j

pqv
p Rq + 1

4
γ j , (9.156c)

1U
j
k = ∂k̄Û j

ext − v j∂k̄Ûext + 3

8
v j ak[0pn] + 1

8
a j [0pn]vk

+ 1

4
δ

j
k

(4

3
Ä − 2vnan[0pn]

)
− 1

4
ε

j
kp Ṙ p + 1

4
γ

j
k, (9.156d)

0	 = 	̂ext − 4v j Û
j

ext + 2v2Ûext + A∂t̄ Ûext + (H j − Av j )∂j̄ Ûext

+ 1

2
Ȧ2 − Ȧv2 + 1

4
v4 + Ḣ jv j − Ċ, (9.156e)

(continued overleaf)
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1	 j = ∂j̄ 	̂ext − 4vk∂j̄ Û k
ext +

(5

2
v2 − Ȧ

)
∂j̄ Ûext − 1

2
v jv

k∂k̄Ûext + v j∂t̄ Ûext

+ A∂t̄ j̄ Ûext + (H k − Avk)∂j̄ k̄Ûext − α j +
(

Ȧ − 1

2
v2

)
a j [0pn]

−
(

Ä − 3

2
vnan[0pn]

)
v j − ε j pq

(
∂ p̄Ûext R

q + v p Ṙq
) − γ̇ j . (9.156f)

It is understood that in these expressions, the external potentials are all evaluated at x̄ = 0
after differentiation.

For later convenience it is useful to decompose 1U jk into its trace, symmetric-tracefree,
and antisymmetric parts. We have

1U jk = 1

3
δ jk 1U + 1U 〈 jk〉 + 1U [ jk] (9.157)

with

1U = Ä − ∂t̄ Ûext − v j a j [0pn], (9.158a)

1U 〈 jk〉 = ∂〈j̄ Û ext
k〉 − v〈 j∂k̄〉Ûext + 1

2
v〈 j ak〉[0pn] + 1

4
γ jk, (9.158b)

1U [ jk] = −∂[j̄ Û ext
k] − v[ j∂k̄]Ûext + 1

4
v[ j ak][0pn] − 1

4
ε jkp Ṙ p. (9.158c)

9.4.5 Matching

Comparison of Eqs. (9.144), (9.145), and (9.146) with Eqs. (9.155) reveals that agreement
is achieved if and only if the matching conditions

0U = 1U j = 0U
j = 1U jk = 0	 = 1	 j = 0, (9.159)

and

H j = Av j , μ = 2v2 − Ȧ, (9.160)

are satisfied. By virtue of Eq. (9.157), the condition 1U jk = 0 implies the independent
conditions 1U = 1U 〈 jk〉 = 1U [ jk] = 0. We now proceed to extract the information contained
in these equations.

The condition 0U = 0 implies that Ȧ = 1
2v2 + Ûext. This, together with Eq. (9.160), tells

us that the metric function μ is given by

μ = 3

2
v2 − Ûext(t̄, 0). (9.161)

The condition 1U j = 0 implies that

a j [0pn] = ∂j̄ Ûext(t̄, 0), (9.162)

and we have established the fact that to leading order in a post-Newtonian expansion of the
mutual gravitational interaction, the compact body moves just as any Newtonian body.

The condition 0U j = 0 reveals that γ j = −4Û ext
j + ( 1

2v2 + 3Ûext)v j + A∂j̄ Ûext −
ε j pqv

p Rq . The condition 1U = 0 is automatically satisfied, and 1U 〈 jk〉 = 0 determines γ jk ,
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but this quantity is not required in the derivation of the equations of motion. The condition

1U [ jk] = 0 reveals that ε jkp Ṙ p = −4∂[j̄ Û ext
k] − 3v[ j∂k̄]Ûext, and this equation determines

the vector R j . The condition 0	 = 0 determines Ċ , but this quantity also is not required.
And finally, 1	 j = 0 determines the post-Newtonian piece of the acceleration vector; after
some algebra and simplification, we arrive at

α j = (
v2 − 4Ûext

)
∂j̄ Ûext − v j

(
vk∂kÛext + 3∂t̄ Ûext

)
− 4vk∂j̄ Û k

ext + 4∂t̄ Û
j

ext + ∂j̄ 	̂ext. (9.163)

As before it is understood that the external potentials are evaluated at x̄ = 0 after differen-
tiation.

The matching conditions have determined the unknown pieces of the coordinate trans-
formation, the functions A, H j , R j , C , γ j , γ jk , and the all-important vector r(t̄), which is
recovered by solving the equations of motion r̈ = a[0pn] + c−2α + O(c−4). In addition, the
matching conditions have determined the unknown metric function μ, and further analysis
would also produce the tidal moments E jk . The problem, therefore, is solved completely:
we have the metric, the coordinate transformation, and the equations of motion.

9.4.6 Equations of motion

The final form of the equations of motion is obtained by inserting Eqs. (9.162) and (9.163)
within Eq. (9.153). We evaluate each quantity at time t̄ = t and replace the hatted potentials
by their original version in Eqs. (9.148) and (9.149). After paying careful attention to the
rules of partial differentiation, which are spelled out at the end of Box 8.2, we arrive at

a j = ∂ jUext + 1

c2

[(
v2 − 4Uext

)
∂ jUext − v j

(
4vk∂kUext + 3∂tUext

)

− 4vk

(
∂ jU

k
ext − ∂kU j

ext

) + 4∂tU
j

ext + ∂ j	ext

]
+ O(c−4). (9.164)

The acceleration vector a now stands for d2r/dt2, and the equations of motion are expressed
in the global inertial frame. These should be compared with Eq. (9.101), which determines
the motion of a fluid body. The equations are identical, and we have established the important
statement that the compact body moves in exactly the same way as a weakly self-gravitating
body. This is a nice confirmation of the fact that general relativity is compatible with the
strong formulation of the principle of equivalence.

In principle the calculation should be completed with the determination of the external
potentials and the conversion of Eq. (9.164) to an explicit system of differential equations
for the position vectors r A(t). There is no need to go through these details here; it is clear
that the computation would lead back to Eq. (9.127).

A few comments, however, may be helpful. The decompositions of Eqs. (9.148) and
(9.149) distinguish between “the body” and the external objects. To recover the expressions
of Eqs. (9.55), (9.58), and (9.80), we must adapt our notation and assign the label A = 1
(say) to our reference body. The internal term G M/s in U then becomes G M1/s1. Because
the Newtonian potential satisfies a linear field equation (∇2U = 0), the external piece can
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be written as a sum of similar terms, so that Uext = ∑
A �=1 G MA/sA. This reproduces the

expression of Eq. (9.55), and the same procedure also gives rise to Eq. (9.58).
The procedure works also for 	, which also satisfies a linear field equation. In the new

notation, and with μ1 given by Eq. (9.161), the internal piece of 	 is

	1 = G M1

s1

[
2v2

1 − 1

2
(n1 · v1)2 − Uext

]
− 1

2
G M1n1 · a1. (9.165)

With Uext = ∑
B �=1 G MB/r1B and a1 = ∇Uext + O(c−2), this is

	1 = G M1

s1

[
2v2

1 − 1

2
(n1 · v1)2

]
−

∑
B �=1

G2 M1 MB

r1Bs1

(
1 − n1B · s1

2r1B

)
. (9.166)

Taking 	ext to be a sum of similar terms, we have reproduced Eq. (9.80), except for a
noticeable difference: the sum

∑
A G E A/sA is present in the original expression, but it is

absent here. The reason for this discrepancy was explained at the end of Sec. 9.4.2: here the
energy terms have been incorporated within the Newtonian potential, which is expressed
in terms of MA instead of m A; they must therefore be removed from the post-Newtonian
potential.

9.5 Motion of spinning bodies

Back in Sec. 9.1.4 we imposed the important restriction that each body should have a
vanishing angular-momentum tensor, and subsequent developments relied heavily on this
assumption. But rotation is everywhere, and it is crucially important to incorporate it
in a description of the motion of an N -body system. In fact, non-rotating bodies are
about as rare as a relativist at a biophysics convention, and failure to account for rotation
would be a significant shortcoming. In atomic, nuclear, and particle physics, the effects of
quantum-mechanical spin are known to be of central importance. In gravitational physics,
it is becoming increasingly clear that spin effects play a similarly central role in such
phenomena as binary black-hole inspirals, gravitational collapse, accretion onto compact
objects, and the emission of gravitational radiation. In addition, several key experimental
tests of general relativity have involved the effects of spin. By spin, of course, we now mean
the macroscopic rotation of an extended body, and not the quantum-mechanical spin of an
elementary particle. We will use the term “spin” to describe the intrinsic (as opposed to
orbital) angular momentum of a rotating body, and will refer to spin–orbit and spin–spin
effects in the orbital motion of an N -body system; these effects are purely classical, but
they have direct analogues in quantum physics.

In this section we compute the inter-body metric of a system of spinning bodies, obtain
the equations of motion for the center-of-mass positions of each body, derive evolution
equations for the intrinsic angular momentum of each body, and examine issues associated
with the choice of center-of-mass.
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9.5.1 Definitions of spin

The intrinsic angular-momentum tensor (or spin tensor) of a rotating body was defined back
in Eq. (9.9b),

S jk
A :=

∫
A
ρ∗(x̄ j v̄k − x̄ k v̄ j

)
d3 x̄, (9.167)

in which x̄ := x − r A is the position of a fluid element relative to the body’s center-of-mass,
and v̄ := v − vA is its relative velocity. We may also introduce a vectorial version of the
spin angular momentum, defined by

SA :=
∫

A
ρ∗ x̄ × v̄ d3 x̄ . (9.168)

It is easy to show that the tensor and vector are related by

S j
A = 1

2
ε j pq S pq

A , S jk
A = ε jkp S p

A. (9.169)

In the rest of the section we frequently go back and forth between the vectorial and tensorial
notions of intrinsic angular momentum.

We continue to assume that our bodies are in dynamical equilibrium, and the virial
identity of Eq. (9.28a) implies that the spin tensor can also be expressed as

S jk
A = 2

∫
A
ρ∗ x̄ j v̄k d3 x̄ . (9.170)

It is important to understand that this relation holds in dynamical equilibrium only; the
definition of Eq. (9.167) is completely general.

We shall have occasion, below, to refine the definition of the spin vector by the inclusion
of post-Newtonian terms at order c−2. Our final definition of the spin vector is

S̄ j
A = S j

A + �intS
j
A + �extS

j
A, (9.171)

in which

�intS
j
A := 1

c2
ε j pq

[∫
A
ρ∗ x̄ pv̄q

(
1

2
v̄2 + 3UA + � + p

ρ∗

)
d3 x̄

−
∫

A
ρ∗ x̄ p

(
4U q

A + 1

2
∂tq X A

)
d3 x̄

]
(9.172)

is a post-Newtonian correction that originates from the body’s internal motion and gravita-
tional potentials, and

�extS
j
A := 1

c2

[(
v2

A + 3U¬A

)
S j

A − 1

2
(vA · SA)v j

A

]
(9.173)

is another correction that originates from the orbital motion and external Newtonian po-
tential. We shall motivate these post-Newtonian additions below, but for the time being we
proceed with the original definition of Eqs. (9.167) and (9.168).
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9.5.2 Equilibrium conditions

To prepare the way for our subsequent computations, we revisit the equilibrium conditions
of Sec. 9.1.3 to see how they must be amended to account for spin. It is easy to see that the
only affected condition is Eq. (9.11), which becomes

4H ( jk)
A − 3K jk

A + δ jk ṖA − 2L ( jk)
A + S p( j

A ∂k)
pU¬A(r A) = O(c−2) (9.174)

in the presence of spin.
To establish this generalized form of the equilibrium condition, we return to the virial

identity of Eq. (9.28c), which is exact and requires no modification to account for spin. In
the no-spin context of Sec. 9.1.3, the terms involving the external Newtonian potential U¬A

could be neglected, as they give rise to contributions of fractional order (RA/rAB)2 � 1
to the equilibrium condition. In our current context, however, these terms contain spin
contributions that must be identified and included in the equilibrium condition.

The first term to examine is

A jk :=
∫

A
ρ∗ x̄ j d

dt
∂kU¬A d3 x̄ . (9.175)

We follow the familiar method of expressing the external potential as a Taylor expansion
about x = r A, inserting the expansion inside the integral, evaluating the result, and dis-
carding terms that are suppressed by a factor of order (RA/rAB)2. In the current case we
have

d

dt
∂kU¬A(x) = d

dt
∂kU¬A(r A) + v̄ p∂pkU¬A(r A) + x̄ p d

dt
∂pkU¬A(r A) + · · · , (9.176)

in which d/dt on the right-hand side is to be interpreted as ∂t + v
q
A∂q , and the spatial

derivatives act on the variables r A. Only the second term contributes to A jk , and making
use of Eq. (9.170), we find that

A jk = −1

2
S pj

A ∂pkU¬A(r A). (9.177)

The second term to examine is

B jk := 3
∫

A
v̄ j∂kU¬A d3 x̄, (9.178)

and its evaluation proceeds along similar lines. In this case we find

B jk = 3

2
S pj

A ∂pkU¬A(r A), (9.179)

and inclusion of these terms in Eq. (9.28c) gives rise to the modified equilibrium condition
of Eq. (9.174).

9.5.3 Inter-body metric of spinning bodies

Our first task is to re-calculate the inter-body metric of an N -body system to account for
the spin of the bodies. We follow the general methods introduced in Sec. 9.2, but now
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retain the terms that used to vanish under the no-spin condition. The idea is to expand the
gravitational potentials about the center-of-mass of each body, and to find the terms that
combine an x̄ j with a v̄k so as to give rise to a spin tensor S jk

A under Eq. (9.170). Terms of
higher order in x̄ j , such as v̄ j x̄ k x̄m x̄n or v̄ j v̄k x̄m x̄n , are discarded, because they give rise
to negligible contributions of fractional order (RA/sA)2 � 1 to the potentials. In this spirit,
we also neglect terms in the potentials that are quadratic in the body spins.

Going over the computations of Sec. 9.2, we see that spin terms will appear in the post-
Newtonian potentials U j , �1, and �6, but that the remaining potentials are not affected.
Straightforward computations reveal that the additional spin terms are given by

�U j = −1

2

∑
A

GS jk
A nk

A

s2
A

, (9.180a)

��1 = −
∑

A

Gv
j
A S jk

A nk
A

s2
A

, (9.180b)

��6 = −
∑

A

Gv
j
A S jk

A nk
A

s2
A

, (9.180c)

in which sA := x − r A, sA := |sA|, and nA := sA/sA. These results imply that the main
post-Newtonian potential 	 is changed by

�	 = −3

2

∑
A

Gv
j
A S jk

A nk
A

s2
A

. (9.181)

These results are expressed in terms of the spin tensor. Transforming to the spin vector, we
have that S jk

A nk
A = (nA × SA) j and v

j
A S jk

A nk
A = −(nA × vA) · SA.

Inserting the potentials within the metric of Eq. (9.44), we find that the changes to the
inter-body metric are given by

�g00 = 3

c4

∑
A

G(nA × vA) · SA

s2
A

+ O(c−6), (9.182a)

�g0 j = 2

c3

∑
A

G(nA × SA) j

s2
A

+ O(c−5), (9.182b)

�g jk = 0(c−4). (9.182c)

These additional terms affect the motion of test masses around each body, and we shall
see that spin effects also modify the center-of-mass motion of each body within the
system.

To illustrate the gravitational influence of spin on a test mass, we specialize the metric
to a single body. We place the body at r A = 0, set vA = 0, and import the additional terms



Trim: 246mm × 189mm Top: 10.193mm Gutter: 18.98mm

CUUK2552-09 CUUK2552-Poisson 978 1 107 03286 6 December 14, 2013 13:43

458 Post-Newtonian theory: System of isolated bodies

from Eq. (9.81). The metric becomes

g00 = −1 + 2

c2

G M

r
− 2

c4

(
G M

r

)2

+ O(c−6), (9.183a)

g0 j = 2

c3

G(x × S) j

r3
+ O(c−5), (9.183b)

g jk =
(

1 + 2

c2

G M

r

)
δ jk + O(c−4), (9.183c)

in which M is the body’s mass, S its spin vector, and r := |x|. We examine the geodesic
motion of a test particle in this spacetime. We describe the motion in terms of the position
vector r(t), and we recall from Sec. 5.2.3, see Eq. (5.52), that the motion follows from the
Lagrangian L = −mc

√−gαβvαvβ , in which m is the particle’s mass and vα = (c, v) with
v = d r/dt . Making the substitutions, and keeping only the Newtonian and spin terms in
the Lagrangian, we find that it is given approximately by

L = −mc2 + 1

2
mv2 + Gm M

r
− 2Gm(x × v) · S

c2r3
. (9.184)

Aligning the spin direction with the z-axis, and expressing the Lagrangian in spherical
polar coordinates, we obtain our final expression

L = −mc2 + 1

2
m

(
ṙ2 + r2θ̇2 + r2 sin2 θ φ̇2

) + Gm M

r
− 2GmS sin2 θ φ̇

c2r
, (9.185)

in which an overdot indicates differentiation with respect to t .
The Lagrangian implies the existence of a conserved angular momentum,

h := 1

m

∂L

∂φ̇
= r2 sin2 θ

(
φ̇ − 2GS

c2r3

)
, (9.186)

and this equation captures the essential features of motion around a spinning body. Consider
a particle released from rest at infinity. The particle has no angular momentum, h = 0, but
when it reaches a position r , it has nevertheless acquired an angular velocity 2GS/(c2r3). A
particle with no angular momentum is therefore compelled to rotate in the same direction as
the spinning body, as if it were dragged along by the rotational motion of the central body.
Conversely, a test particle with a vanishing angular velocity at a position r has a negative
angular momentum, h = −2GS sin2 θ/(c2r ), as if it were counter-rotating relative to the
local spacetime. In the spacetime of a rotating body, therefore, zero angular momentum
does not imply zero angular velocity, and zero angular velocity does not imply zero angular
momentum. The phrase dragging of inertial frames is often attached to these phenomena.
We return to the observable consequences of frame dragging in Chapter 10.

9.5.4 Spin–orbit and spin–spin accelerations

We next turn to the task of calculating the center-of-mass acceleration aA of a spinning
body. Our strategy here is identical to the one adopted in Sec. 9.3. First, we insert the
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post-Newtonian Euler equation within the definition

m AaA =
∫

A
ρ∗ dv

dt
d3x (9.187)

and evaluate the resulting integrals, as listed in Eqs. (9.88). Second, we invoke the equilib-
rium conditions of Secs. 9.1.3 and 9.5.2 to eliminate all terms that depend on the body’s
internal structure. And third, we evaluate the external potentials and their derivatives at the
position of each body. As we shall show below, the final result of this computation is the
expression

aA = aA[0pn] + aA[1pn] + aA[so] + aA[ss] + O(c−4), (9.188)

in which the Newtonian and post-Newtonian terms are given by Eq. (9.127),

a j
A[so] = 3

2c2

∑
B �=A

G MB

r3
AB

{
n〈 jk〉

AB

[
v

p
A

(
3Ŝkp

A + 4Ŝkp
B

) − v
p
B

(
3Ŝkp

B + 4Ŝkp
A

)]

+ n〈kp〉
AB (vA − vB)p

(
3Ŝ jk

A + 4Ŝ jk
B

)}
(9.189)

is the spin-orbit acceleration, which is linear in each spin tensor, and

a j
A[ss] = −15

c2

∑
B �=A

G MB

r4
AB

Ŝkp
A Ŝkq

B n〈 j pq〉
AB (9.190)

is the spin–spin acceleration, bilinear in the spins. We recall the symbols r AB := r A − r B ,
rAB := |r AB |, nAB := r AB/rAB , that angular brackets such as 〈 j pq〉 indicate a symmetric-
tracefree combination, and we have introduced

Ŝ jk
A := 1

MA
S jk

A (9.191)

to denote the spin tensor divided by the body’s total mass-energy MA.
To arrive at Eq. (9.188) we return to the listing of partial forces in Eqs. (9.88) and identify

the ones that produce a dependence upon spin. It is easy to see that F j
6 , F j

8 , F j
9 , F j

11, and
F j

12 all contain terms proportional to S jk
A , and that F j

10, F j
11, F j

12, F j
13, and F j

18 contain terms
proportional to S jk

B contributed by the external potentials U j
¬A, �1,¬A, and �6,¬A.

Making use of the calculational tools developed in Sec. 9.3.2, we find that the first group
of terms evaluates to

c2�F j
6 = −vk

A Skp
A ∂pjU¬A, (9.192a)

c2�F j
8 = 3

2
S jp

A ∂tpU¬A, (9.192b)

c2�F j
9 = 2vk

A S jp
A ∂kpU¬A, (9.192c)

c2�F j
11 = 0, (9.192d)

c2�F j
12 = 2Skp

A ∂ j pU k
¬A, (9.192e)
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in which the external potentials are evaluated at r A after differentiation. The second group
of terms is

c2�F j
10 = 4m A�∂tU

j
¬A, (9.193a)

c2�F j
11 = 4m Avk

A�∂kU j
¬A, (9.193b)

c2�F j
12 = −4m Avk

A�∂ jU
k
¬A, (9.193c)

c2�F j
13 = 2m A�∂ j�1,¬A, (9.193d)

c2�F j
18 = −1

2
m A�∂ j�6,¬A, (9.193e)

in which, for example, �∂kU j
¬A denotes the spin-dependent terms in the gradient of the

external vector potential. In addition to these contributions we must also account for the
spin-dependent term in the equilibrium condition of Eq. (9.174), which, according to
Eq. (9.100), gives rise to the shift

c2�F j = �
(
2L ( jk)

A − 4H ( jk)
A + 3K jk

A − δ jk ṖA

)
vk

A = vk
A S p(k

A ∂ j)
pU¬A. (9.194)

In the next step we employ the methods described in Sec. 9.3.4 to evaluate the derivatives
of external potentials that occur in Eqs. (9.192), (9.193), and (9.194). We have

∂ jkU¬A = 3
∑
B �=A

Gm Bn〈 jk〉
AB

r3
AB

, (9.195a)

∂tkU¬A = −3
∑
B �=A

Gm Bn〈kp〉
AB v

p
B

r3
AB

, (9.195b)

∂ j pU k
¬A =

∑
B �=A

(
3

Gm Bn〈 j p〉
AB vk

B

r3
AB

− 15

2

GSkq
B n〈 j pq〉

AB

r4
AB

)
, (9.195c)

�∂ jU
k
¬A = 3

2

∑
B �=A

GSkp
B n〈 j p〉

AB

r3
AB

, (9.195d)

�∂tU
j
¬A = −3

2

∑
B �=A

GS jp
B vk

Bn〈kp〉
AB

r3
AB

, (9.195e)

�∂ j�1,¬A = 3
∑
B �=A

GSkp
B vk

Bn〈 j p〉
AB

r3
AB

, (9.195f)

�∂ j�6,¬A = 3
∑
B �=A

GSkp
B vk

Bn〈 j p〉
AB

r3
AB

. (9.195g)

Making the substitutions and adding up the partial forces, we finally obtain the spin–orbit
and spin–spin accelerations of Eqs. (9.189) and (9.190). In the last step we make the
replacement m A → MA + O(c−2) in the accelerations, so as to express them in terms of
the total mass-energy MA instead of the material mass m A.
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9.5.5 Conserved quantities

The conserved quantities of Sec. 9.3.6 also acquire spin-dependent terms. While it is easy
to see that the total mass-energy M is spin-independent, a close examination of Eqs. (9.129)
and (9.131) reveals that the center-of-mass position R and total momentum P contain spin
terms. In the case of the center-of-mass position, these contributions originate from the term
1
2ρ∗x jv2 inside the integral. In the case of the total momentum, they arise from ρ∗v jU and
ρ∗� j .

We calculate the spin-dependent terms by following the approach detailed in Sec. 9.3.6,
and obtain

�(M R j ) = 1

2c2

∑
A

S jk
A vk

A = 1

2c2

∑
A

(
vA × SA

) j
(9.196)

for the change in the barycenter position, and

�P j = − 1

2c2

∑
A

∑
B �=A

G MB

r2
AB

S jk
A nk

AB = − 1

2c2

∑
A

∑
B �=A

G MB

r2
AB

(
nAB × SA

) j
(9.197)

for the change in the total momentum. It is easy to show that d�(M R)/dt = �P + O(c−4)
and d�P/dt = O(c−4) provided that d S jk

A /dt = O(c−2).

9.5.6 Spin precession

Our next task in this survey of spinning bodies is to derive an evolution equation for each
spin vector SA. This question was first considered back in Sec. 1.6.8 in the context of
Newtonian gravity, where we showed that SA changes as a result of a coupling between
the body’s multipole moments I L

A and inhomogeneities in the external Newtonian potential
U¬A. We have so far neglected all effects associated with multipole moments, and we
shall continue to do so in our treatment of spin evolution. As a result, we shall find that
the changes in SA occur at post-Newtonian order, and result from a coupling between the
body’s spin and gradients of the external potentials.

Our final expression of the spin evolution equation involves the refined spin vector of
Eq. (9.171). It takes the form of the precession equation

d S̄A

dt
= �A × S̄A + O(c−4), (9.198)

in which the precessional angular velocity is given by

�A = �A[so] + �A[ss], (9.199)

with

�A[so] = 1

2c2

∑
B �=A

G MB

r2
AB

nAB × (
3vA − 4vB

)
, (9.200a)

�A[ss] = 1

c2

∑
B �=A

G

r3
AB

[
3
(
S̄B · nAB

)
nAB − S̄B

]
. (9.200b)
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The first term describes a spin–orbit interaction, and the second a spin–spin interaction.
Equation (9.198) implies that the magnitude |S̄A| of the spin vector is a constant of the
motion; the equation describes a precession of the spin around the time-dependent angular-
velocity vector �A.

The spin-precession equation involves the refined spin vector S̄A instead of the original
vector SA, but the inter-body metric and equations of motion were previously written in
terms of the original spin. There is no obstacle, however, in expressing all previous results
in terms of the refined spin. Because SA = S̄A + O(c−2), and because all spin terms occur
at post-Newtonian order in the metric and equations of motion, the substitution affects only
the neglected terms at 2pn order. The final expression of our results, therefore, involves
only the refined spin vector.

Partial torques

The derivation of Eq. (9.198) begins with

d S j
A

dt
= ε j pq

∫
A
ρ∗ x̄ p dvq

dt
d3 x̄, (9.201)

which is obtained by straightforward differentiation of Eq. (9.168); the integral initially
features d v̄ p/dt = dv p/dt − a j

A, but the center-of-mass condition
∫

A ρ∗ x̄ p d3 x̄ = 0 im-
plies that the second term leads to a vanishing contribution to the torque. In this we insert
the post-Newtonian version of Euler’s equation and end up with a sum of terms that bears
a close resemblance to Eq. (9.86). For our purposes here it is helpful to write the Euler
equation – refer to Eq. (8.119) – in the alternative form

ρ∗ dv j

dt
= −∂ j p + ρ∗∂ jU + 1

c2

{(
1

2
v2 + U + � + p

ρ∗

)
∂ j p − v j∂t p

+ ρ∗
[

(v2 − 4U )∂ jU − 3v j dU

dt
− v jvk∂kU + 4

dU j

dt
− 4vk∂ jU

k + ∂ j	

]}

+ O(c−4), (9.202)

in which 	 = ψ + 1
2∂t t X and ψ = 3

2�1 − �2 + �3 + 3�4 – refer to Eq. (8.3) and
Eq. (8.9). Inserting this within Eq. (9.201), we have that

d S j
A

dt
= 1

c2
ε j pq

9∑
n=1

G pq
n + O(c−4), (9.203)

where

G jk
1 :=

∫
A

x̄ j

(
1

2
v2 + U + � + p

ρ∗

)
∂k p d3 x̄, (9.204a)

G jk
2 := −

∫
A

x̄ jvk∂t p d3 x̄, (9.204b)

G jk
3 :=

∫
A
ρ∗ x̄ j (v2 − 4U )∂kU d3 x̄, (9.204c)

(continued overleaf)
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G jk
4 := −3

∫
A
ρ∗ x̄ jvk dU

dt
d3 x̄, (9.204d)

G jk
5 := −

∫
A
ρ∗ x̄ jvkv p∂pU d3 x̄, (9.204e)

G jk
6 := 4

∫
A
ρ∗ x̄ j dU k

dt
d3 x̄, (9.204f)

G jk
7 := −4

∫
A
ρ∗ x̄ jv p∂kU p d3 x̄, (9.204g)

G jk
8 :=

∫
A
ρ∗ x̄ j∂kψ d3 x̄, (9.204h)

G jk
9 := 1

2

∫
A
ρ∗ x̄ j∂t tk X d3 x̄, (9.204i)

are the partial torques. As motivated previously, we have discarded the Newtonian terms in
Eq. (9.203), and factorized the overall factor of c−2.

The remaining computations are lengthy, but they proceed along the same lines as the
evaluation of the partial forces in Sec. 9.3.2. For example, the velocity vector is decom-
posed as v = vA + v̄, the potentials are decomposed into internal and external pieces, the
external potentials are expressed as Taylor expansions about r A, integrals featuring an odd
number of internal vectors are set to zero, and terms of fractional order (RA/rAB)2 � 1
are neglected. In addition, double volume integrals are symmetrized with respect to the
integration variables x̄ and x̄′, and all terms in G jk

n that are symmetric in jk are discarded,
because they do not survive the antisymmetrization operation contained in Eq. (9.203).
Skipping over these computational details, we obtain

G jk
1 =

∫
A

x̄ j

(
1

2
v̄2 + UA + � + p

ρ∗

)
∂k p d3 x̄, (9.205a)

G jk
2 = −

∫
A

x̄ j v̄k∂t p d3 x̄, (9.205b)

G jk
3 =

∫
A
ρ∗ x̄ j (v̄2 − 4UA)∂kUA d3 x̄ + S jp

A v
p
A∂kU¬A, (9.205c)

G jk
4 = −3

∫
A
ρ∗ x̄ j v̄k dUA

dt
d3 x̄ − 3

2
vk

A S jp
A ∂pU¬A − 3

2
S jk

A

dU¬A

dt
, (9.205d)

G jk
5 = −vk

A�
j p
A v

p
A −

∫
A
ρ∗ x̄ j v̄k v̄ p∂pUA d3 x̄ − 1

2

(
vk

A S jp
A + v

p
A S jk

A

)
∂pU¬A, (9.205e)

G jk
6 = 4

d

dt

∫
A
ρ∗ x̄ jU k

A d3 x̄ + 2S jp
A ∂pU k

¬A, (9.205f)

G jk
7 = −2S jp

A ∂kU p
¬A, (9.205g)

G jk
8 = G

∫
A
ρ∗ρ∗′ x̄ j

(
−3

2
v̄′2 + U ′

A − �′ − 3
p′

ρ∗′

)
(x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄, (9.205h)

G jk
9 = 1

2

d

dt

∫
A
ρ∗ x̄ j∂tk X A d3 x̄ + vk

A�
jk
A v

p
A, (9.205i)
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in which the external potentials are evaluated at r A after differentiation. The partial torques
involve some external pieces that depend on the spin tensor S jk

A , and some internal integrals
that are not directly featured in the final result displayed in Eq. (9.198). Many of these
integrals actually cancel out, as can be seen for the terms involving the potential energy
tensor �

jk
A .

Other cancellations are produced once we express G jk
1 in a different form. We eliminate

∂k p from the integral by making use of the Newtonian version of Euler’s equation, which
we write in the approximate form ρ∗d v̄k/dt = −∂k p + ρ∗∂kUA, having equated dvk

A/dt
with ∂kU¬A(r A). The partial torque becomes

G jk
1 = −

∫
A
ρ∗ x̄ j

(
1

2
v̄2 + 3UA + � + p

ρ∗

)
d v̄k

dt
d3 x̄ + 2

∫
A
ρ∗ x̄ jUA

d v̄k

dt
d3 x̄

+
∫

A
ρ∗ x̄ j

(
1

2
v̄2 + UA + � + p

ρ∗

)
∂kUA d3 x̄ . (9.206)

The integrand of the first term is ρ∗ x̄ j Ad v̄k/dt with A := 1
2 v̄2 + 3UA + � + p/ρ∗, and

we express it as

ρ∗ d

dt

(
x̄ j v̄k A

) − ρ∗v̄ j v̄k A − ρ∗ x̄ j v̄k d A

dt
,

with d A/dt = (∂t p + vn
A∂n p)/ρ∗ + v̄n∂nUA + 3dUA/dt ; to arrive at this result we have

invoked Euler’s equation once more, and made use of d�/dt = (p/ρ∗2)dρ∗/dt , the state-
ment of the first law of thermodynamics. We make the substitutions within the first integral
in G jk

A , and for the second integral we make use of Euler’s equation and express x̄ jUA∂k p
as

∂k

(
x̄ j p UA

) − δ jk p UA − x̄ j p ∂kUA,

with the first term producing a vanishing surface integral. Collecting results, we obtain

G jk
1 = − d

dt

∫
A
ρ∗ x̄ j v̄k

(
1

2
v̄2 + 3UA + � + p

ρ∗

)
d3 x̄ +

∫
A

x̄ j v̄k∂t p d3 x̄

+
∫

A
ρ∗ x̄ j v̄k v̄ p∂pUA d3 x̄ + 3

∫
A
ρ∗ x̄ j v̄k dUA

dt
d3 x̄

+
∫

A
ρ∗ x̄ j

(
1

2
v̄2 + 3UA + � + 3

p

ρ∗

)
∂kUA d3 x̄, (9.207)

and recognize some of the internal integrals that were encountered previously.

Internal and external torques

Summing over the partial torques, we find that the internal pieces collect themselves into

G jk
int = − d

dt

[∫
A
ρ∗ x̄ j v̄k

(
1

2
v̄2 + 3UA + � + p

ρ∗

)
d3 x̄

−
∫

A
ρ∗ x̄ j

(
4U k

A + 1

2
∂tk X A

)
d3 x̄

]

(continued overleaf)
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− G

∫
A
ρ∗ρ∗′ x̄ j

(
3

2
v̄2 − UA + � + 3

p

ρ∗

)
(x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄

− G

∫
A
ρ∗ρ∗′ x̄ j

(
3

2
v̄′2 − U ′

A + �′ + 3
p′

ρ∗′

)
(x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄ . (9.208)

The last term can be re-expressed as

+G

∫
A
ρ∗ρ∗′ x̄ ′ j

(
3

2
v̄2 − UA + � + 3

p

ρ∗

)
(x̄ − x̄ ′)k

|x̄ − x̄′|3 d3 x̄ ′d3 x̄

and combined with the previous integral to give something symmetric in jk. Discarding
this, we find that the internal pieces give rise to a total time derivative that can be moved to
the left-hand side of Eq. (9.203) and absorbed into a re-definition of the spin vector. This is
the origin of the term �intS

j
A in Eq. (9.171).

With the redefinition S̄ j
A := S j

A + �intS
j
A, which for the moment excludes the external

shift also present in Eq. (9.171), we find that the spin-evolution equation becomes

d S̄ j
A

dt
= 1

c2
ε j pq G pq

ext + O(c−4) (9.209)

with

G jk
ext := S̄ jp

A v
p
A∂kU¬A − 2S̄ jp

A vk
A∂pU¬A − 1

2
S̄ jk

A v
p
A∂pU¬A − 3

2
S̄ jk

A

dU¬A

dt

+ 2S̄ jp
A

(
∂pU k

¬A − ∂kU p
¬A

)
, (9.210)

in which the original spin tensor S jk
A have been replaced by its refinement S̄ jk

A = S jk
A +

O(c−2). Our expression for G jk
ext is not unique, because we may again collect some of its

terms in a total time derivative that can be moved to the left-hand side of the spin-evolution
equation. We can use this freedom judiciously to ensure that the resulting equation takes
the form of a precession equation, as we have it in Eq. (9.198). In these manipulations
we use the fact that d S̄ jk

A /dt = O(c−2), as well as the Newtonian equations of motion
dv

j
A/dt = ∂ jU¬A(r A) + O(c−2). For example, the v

p
A∂pU¬A factor in the third term of

Eq. (9.210) can be written as

v
p
A∂pU¬A = v

p
A

dv
p
A

dt
= 1

2

d

dt

(
v2

A

)
, (9.211)

and this term can indeed be expressed as a total time derivative. As another example, we
have

vk
A∂pU¬A = d

dt

(
vk

Av
p
A

) − v
p
A∂kU¬A, (9.212)

and the substitution can be made in the second term of Eq. (9.210). After simplification we
find that our new expression for G jk

ext becomes

G jk
ext = − d

dt

(
1

2
S̄ jp

A vk
Av

p
A + 1

4
S̄ jk

A v2
A + 3

2
S̄ jk

A U¬A

)

+ 3

2
S̄ jp

A

(
v

p
A∂kU¬A − vk

A∂pU¬A

) − 2S̄ jp
A

(
∂kU p

¬A − ∂pU k
¬A

)
. (9.213)
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Moving the time derivative to the left-hand side of Eq. (9.203), we see that the extra terms
give rise to the additional shift �extS

j
A in Eq. (9.171); we have arrived at our final version

of the spin vector, S̄ j
A = S j

A + �intS
j
A + �extS

j
A = S j

A + O(c−2).
In the final step we evaluate the derivatives of the external potentials, taking into account

the spin terms in the vector potential – refer to Eq. (9.195d) – and make the substitutions
in Eq. (9.213). Excluding now the total time derivative, we have that

G jk
ext = G jk[so] + G jk[ss], (9.214)

with

G jk[so] = −1

2
S̄ jp

A

∑
B �=A

Gm B

r2
AB

[
(3vA − 4vB)pnk

AB − (3vA − 4vB)kn p
AB

]
(9.215)

and

G jk[ss] = S̄ jp
A

∑
B �=A

G

r3
AB

[
3n p

AB S̄kq
B nq

AB − 3nk
AB S̄ pq

B nq
AB + 2S̄ pk

B

]
. (9.216)

Inserting this within Eq. (9.203), expressing the spin tensor in terms of the spin vector S̄ j
A,

and simplifying, we finally arrive at the spin-precession equation of Eq. (9.198).

9.5.7 Comoving frame and proper spin

The partial redefinition SA → SA + �int SA of the spin vector was performed to eliminate
the total time derivative from the right-hand side of Eq. (9.208), and this operation was
unique. The further shift of the spin vector by �ext SA was introduced specifically to cast the
spin evolution equation in the form of a precession equation, and this operation reflected a
choice on our part; the equation could have been left in its original form, or manipulated
into yet a different form, in spite of the fact that these alternative versions would have been
less compelling than Eq. (9.198). In this section we provide additional motivation for the
external shift. We shall show that

S̄A := SA + �ext SA = SA + 1

c2

[(
v2

A + 3U¬A

)
SA − 1

2
(vA · SA)vA

]
(9.217)

is the spin vector as measured in a non-inertial frame that is at all times moving with the
body; we call it the proper spin, or comoving spin. Our considerations here exclude the
internal shift contributed by the internal motions and potentials.

The transformation from the original, inertial frame (t, x j ) to the non-inertial, comoving
frame (t̄, x̄ j ) is described by the class of post-Newtonian transformations presented in
Sec. 8.3 – refer to Box 8.2. The transformation is given by

t = t̄ + c−2α(t̄, x̄ j ) + O(c−4), (9.218a)

x j = x̄ j + r j (t) + c−2h j (t̄, x̄ j ) + O(c−4), (9.218b)
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in which

α = A(t̄) + ṙ p x̄ p, (9.219a)

h j = H j (t̄) + H j
p(t̄)x̄ p + 1

2
H j

pq (t̄)x̄ p x̄q , (9.219b)

with

Hjp = 1

2
ṙ j ṙ p − δ j p

(
Ȧ − 1

2
ṙ2

)
, (9.220a)

Hjpq = −δ j pr̈q − δ jq r̈ p + δpq r̈ j ; (9.220b)

the functions r j (t̄), A(t̄), and H j (t̄) are for now arbitrary, overdots indicate differentiation
with respect to t̄ , and ṙ2 := δpq ṙ pṙ q . The terms of order c−4 in the time transformation
are not required here, and the functions R j (t̄) that would normally appear in Hjp were set
equal to zero.

The starting point of our discussion of proper spin is the selection of a representative
world line zA(t) within body A, which is meant to track the motion of its “center-of-mass.”
An issue that we shall have to address is the precise meaning of this phrase. In our previous
considerations, the center-of-mass was always defined in the inertial frame, but here we have
the option of defining the center-of-mass in the body’s comoving frame; these definitions
are not equivalent when the body is spinning, and we shall have to decide which center-
of-mass the representative world line is supposed to track. We leave it arbitrary for the
time being, and think of it as the world line of an arbitrarily-selected fluid element within
the body. The frame (t̄, x̄ j ) is attached to the representative world line, so that x̄ j = 0 on
the representative world line.

Our spin vector shall now be defined with respect to the representative world line. We
have

SA :=
∫

A
ρ∗(x − zA) × (v − wA) d3x (9.221)

in the inertial frame, in which wA := d zA/dt and the integral is evaluated on a surface
t = constant in spacetime (so that all the sampled points x are simultaneous with zA in the
inertial frame), and

S̄A :=
∫

A
ρ̄∗ x̄ × v̄ d3 x̄ (9.222)

in the comoving frame, in which the integral is evaluated on a surface t̄ = constant (all the
sampled points x̄ are simultaneous in the comoving frame). We wish to express SA in terms
of S̄A, and for this we must relate x − zA to x̄, and v − wA to v̄, and take into account the
fact that dm := ρ∗ d3x = ρ̄∗ d3 x̄ is an invariant – recall the discussion around Eq. (8.92).

To achieve this we examine the world line of an arbitrary fluid element that passes
through a spacetime point P within the body, to which we assign the coordinates (t, x j ) in
the inertial frame, and the coordinates (t̄, x̄ j ) in the comoving frame; the transformation is
given by Eq. (9.218). Together with this world line we consider the body’s representative
world line, and on it we select the spacetime point Q that is simultaneous with P in the
inertial frame; its coordinates are (t, z j

A) in the inertial frame, (t̄A, 0) in the comoving frame,
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and the transformation is given by

t = t̄A + c−2 A(t̄A) + O(c−4), z j
A = r j (t̄A) + c−2 H j (t̄A) + O(c−4). (9.223)

From Eqs. (9.218) and (9.223) we find that

t̄ = t̄A − c−2ṙ p(t̄A)x̄ p + O(c−4) (9.224)

and (x − z A) j = x̄ j + r j (t̄) − r j (t̄A) + c−2[h j (t̄, x̄ j ) − H j (t̄A)] + O(c−4). The last equa-
tion appears to give us what we need, but it requires additional work because the various
terms on the right-hand side refer to different times; what we want instead is for all the
terms to be simultaneous in the comoving frame. In particular, x̄ j refers to P , which is not
simultaneous, and we wish to express this in terms of the coordinates of the point P ′ on
the fluid element’s world line that is simultaneous with Q. If the functions x̄ j (t̄) describe
the world line in the comoving frame, then x̄ j (t̄) refers to P , while x̄ j (t̄A) refers to P ′,
and the relation x̄ j = x̄ j (t̄A) − c−2v̄ j ṙ p x̄ p + O(c−4) follows by simple Taylor expansion;
v̄ j is the fluid’s velocity field in the comoving frame. Proceeding similarly with r j (t̄), we
find that

(x − z A) j = x̄ j + c−2

[(
H j

p − ṙ j ṙ p − v̄ j ṙ p

)
x̄ p + 1

2
H j

pq x̄ p x̄q

]
+ O(c−4), (9.225)

in which all terms on the right-hand side refer to P ′ and are evaluated at comoving time t̄A.
The left-hand side of Eq. (9.225) can be differentiated with respect to t , the right-hand

side can be differentiated with respect to t̄A, and Eq. (9.223) can be used to relate the time
differentials. The end result is

(v − wA) j = v̄ j + c−2

[(
Ḣ j

p − ṙ j r̈ p − v̄ j r̈ p − r̈ j ṙ p − ā j ṙ p

)
x̄ p − Ȧv̄ j

+ (
H j

p − ṙ j ṙ p − v̄ j ṙ p

)
v̄ p + 1

2
Ḣ j

pq x̄ p x̄q + H j
pq x̄ pv̄q

]
, (9.226)

in which all terms on the right-hand side continue to be evaluated at comoving time t̄A.
We next insert Eqs. (9.225) and (9.226) within Eq. (9.221) and evaluate the integral.

We implement our usual simplification rules by discarding all terms that involve an odd
number of internal vectors, and neglecting all terms that scale as R2

A . We insert the previously
displayed expression for Hjk , simplify the result, and arrive at

SA = S̄A + 1

c2

[(
1

2
ṙ2 − 3 Ȧ

)
S̄A + 1

2
(ṙ · S̄A)ṙ

]
+ O(c−4), (9.227)

which can be inverted to give

S̄A = SA + 1

c2

[(
3 Ȧ − 1

2
ṙ2

)
SA − 1

2
(ṙ · SA)ṙ

]
+ O(c−4). (9.228)

This equation looks vaguely like Eq. (9.217), but we must justify the identification ṙ = vA

and determine the arbitrary function A(t̄).
In fact, our discussion thus far has left many quantities undetermined. We have yet

to specify the functions r j (t̄), A(t̄), and H j (t̄), and we have yet to make a choice of
representative world line. We first tackle the determination of r j and H j , and to achieve
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this we return to Eq. (9.223), which we write as t̄A = t − c−2 A(t̄A) + O(c−4) and

z j
A(t) = r j (t̄A) + c−2 H j (t̄A) + O(c−4). (9.229)

If we express the functions on the right-hand side in terms of t , we have that

z j
A(t) = r j (t) + c−2

[
H j (t) − A(t)ṙ j (t)

] + O(c−4). (9.230)

This equation becomes z j
A = r j + O(c−4) when we set H j = Aṙ j , and we may then identify

r j (t̄) with the position z j
A of the representative world line evaluated at the time t = t̄ . In

this manner we identity r with zA, and ṙ with wA.
We next tackle determination of the representative world line. As a guide, we insert

Eq. (9.225) within
∫

A ρ∗(x − z A) j d3x , evaluate the integral, and get

(rA − z A) j =
[

1 − 1

c2

(
Ȧ − 1

2
w2

A

)]
r̄ j

A − 1

2c2
(wA · r̄ A)w j

A

+ 1

2m Ac2
S̄ jk

A wk
A + O(c−4), (9.231)

in which

r A := 1

m A

∫
A
ρ∗x d3x (9.232)

is the center-of-mass position in the inertial frame,

r̄ A := 1

m A

∫
A
ρ̄∗ x̄ d3 x̄ (9.233)

is the center-of-mass position in the comoving frame, and

S̄ jk
A :=

∫
A
ρ̄∗(x̄ j v̄k − x̄ k v̄ j

)
d3 x̄ (9.234)

is the comoving spin tensor.
There are two obvious ways of selecting a representative world line. The first is to declare

that it will track the body’s center-of-mass as defined in the inertial frame. To effect this
choice we set zA = r A, and Eq. (9.231) informs us that the position of the comoving
center-of-mass is given by

r̄ j
A = − 1

2m Ac2
S̄ jk

A vk
A + O(c−4). (9.235)

With this choice of representative world line, we find that the spatial origin of the comoving
frame (t̄, x̄ j ) does not coincide with the comoving center-of-mass, which is offset by the
vector r̄ A. This situation invites us to make a distinction between the comoving spin S̄A,
defined relative to the origin of the comoving frame, and a proper spin defined relative to
the comoving center-of-mass. The proper spin would be defined by∫

A
ρ̄∗(x̄ − r̄ A) × (v̄ − v̄A) d3 x̄,

but it is easy to show that since r̄ A = O(c−2) and v̄A = O(c−2), this is equal to the
comoving spin S̄A up to terms of order c−4. So while the distinction is important as a
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matter of principle, it has no practical implications at the level of accuracy maintained in
our discussion of spinning bodies.

The second way of selecting a representative world line is to declare that it will track the
body’s center-of-mass as defined in the comoving frame. In this case we set r̄A = 0, and
Eq. (9.231) implies that

z j
A = r j

A − 1

2m Ac2
S jk

A vk
A + O(c−4). (9.236)

This equation states that the representative world line is offset from the inertial-frame
center-of-mass by the vector S jk

A vk
A/(2m Ac2). In this case there is no distinction to be made

between comoving spin and proper spin, and the distinction between the inertial spin of
Eq. (9.221) and the usual spin vector

∫
A ρ∗(x − r A) × (v − vA) d3x occurs only at order

c−4 and is therefore unimportant.
Either way of selecting the representative world line leads to the identifications r = zA =

r A + O(c−2) and ṙ = wA = vA + O(c−2), and Eq. (9.228) becomes

S̄A = SA + 1

c2

[(
3 Ȧ − 1

2
v2

A

)
SA − 1

2
(vA · SA)vA

]
+ O(c−4). (9.237)

Our only remaining task is to determine the function A(t̄) that appears in the transformation
between the internal and comoving frames. Here we take our guidance from Sec. 8.3.5,
in which we first examined the post-Newtonian transformation between a global, inertial
frame to a local, comoving frame. There it was shown that in order to account for the
special-relativistic and gravitational effects of time dilation, the function A(t̄) must be a
solution to

Ȧ = 1

2
v2

A + U¬A, (9.238)

in which the external potential is evaluated on the representative world line. Making the
substitution in Eq. (9.237), we arrive at Eq. (9.217), and our justification of the external
shift �ext SA is complete.

9.5.8 Choice of representative world line

The discussion of the previous subsection revealed an ambiguity in the choice of repre-
sentative world line when the body is spinning. We considered two canonical choices, one
in which the representative world line tracks the body’s center-of-mass as defined in the
global, inertial frame, and another in which it tracks the center-of-mass as defined in the
local, comoving frame. While these choices lead to the same notion of proper spin, they
lead to different representations of the center-of-mass motion.

To explore the impact of this ambiguity on the equations of motion, we enlarge our free-
dom of choice and examine a one-parameter family of representative world lines described
by

r̃ j
A = r j

A − λ

2m Ac2
S jk

A vk
A + O(c−4), (9.239)
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in which r A is the center-of-mass position in the inertial frame, S jk
A is the spin tensor of

Eq. (9.167), and λ is a dimensionless parameter. (In this subsection we prefer to use the
notation r̃ A for the representative world line, instead of zA as we did in the preceding
subsection.) The assignment λ = 0 makes the representative world line track the inertial
center-of-mass, λ = 1 makes it track the comoving center-of-mass, and it is easy to show
that Eq. (9.239) gives rise to the comoving spin vector of Eq. (9.217) for any choice of λ.

Because the difference between r̃ A and r A is of order c−2, the transformation has no
impact on the spin-precession equations (9.198). It also has no direct impact on the post-
Newtonian terms in the center-of-mass accelerations of Eq. (9.188). There is, however, an
indirect impact, because the Newtonian acceleration will undergo a change of order c−2, and
this change can be transferred to the post-Newtonian terms; because the transformation is
linear in the spin, the transfer affects the form of the spin–orbit acceleration. In addition, we
can see that the transformation will have no direct impact on the post-Newtonian potentials
within the metric, but that the Newtonian potential will be changed by a term of order c−2

that can be transferred to the post-Newtonian potentials.
We begin with a computation of the transformed Newtonian potential, which is given

by U = ∑
A Gm A/sA with sA := |x − r A| when it is evaluated far away from each body.

This expression refers to the inertial center-of-mass of each body, and our goal here is
to shift the reference to the representative world line. We write r A = r̃ A + δr A, with δr A

given by (minus) the second term in Eq. (9.239), and we express sA as |s̃A − δr A|, with
s̃A := x − r̃ A denoting the separation between the field point x and the representative world
line. Performing a Taylor expansion in powers of δr A, we quickly arrive at

U = Ũ + λ

2c2

∑
A

G(ñA × ṽA) · SA

s̃2
A

+ O(c−4), (9.240)

in which Ũ := ∑
A Gm A/s̃A is the shifted potential, s̃A := |s̃A|, ñA := s̃A/s̃A, and ṽA :=

d r̃ A/dt is the velocity of the representative world line. The transformation of the Newtonian
potential creates a spin contribution to g00 that must be added to the one already listed in
Eq. (9.182). We find that

�g00 = 3 + λ

c4

∑
A

G(ñA × ṽA) · SA

s̃2
A

+ O(c−6) (9.241)

is the spin term under the new description of the body’s motion. There are no additional
changes to g0 j and g jk .

We next consider the changes in the equations of motion. The first source of change is the
difference implied by Eq. (9.239) between the acceleration ãA of the representative world
line and the acceleration aA of the inertial center-of-mass. To calculate this difference we
first differentiate Eq. (9.239) with respect to time and obtain ṽA in terms of vA. The term
involving d S jk

A /dt = O(c−2) can be neglected, and the term involving ak
A can be written in

terms of the Newtonian acceleration. The end result is

ṽ
j
A = v

j
A + λ

2m Ac2

∑
B �=A

G MB

r2
AB

S jk
A nk

AB . (9.242)
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Another differentiation with respect to t produces

ã j
A = a j

A − 3λ

2c2

∑
B �=A

G MB

r3
AB

n〈kp〉
AB (vA − vB)p Ŝ jk

A , (9.243)

in which Ŝ jk
A := S jk

A /m A = S jk
A /MA + O(c−2).

The second source of change is the shift of the Newtonian acceleration aA[0pn] that
occurs when the acceleration is made to refer to the representative world line instead of
the inertial center-of-mass. This shift is analogous to the one calculated previously for the
Newtonian potential, and indeed, it can be computed in the same way, by expanding the
acceleration in powers of δr A. The outcome of this computation is

a j
A[0pn] = −

∑
B �=A

G MB

r̃2
AB

ñ j
AB + 3λ

2c2

∑
B �=A

G MB

r̃3
AB

ñ〈 jk〉
AB

(
Ŝkp

A ṽ
p
A − Ŝkp

B ṽ
p
B

)
, (9.244)

in which r̃ AB := r̃ A − r̃ B , r̃AB := |r̃ AB |, and ñAB := r̃ AB/r̃AB .
Collecting results, we find that the changes to the acceleration are all linear in the spin

tensors, and that they contribute to a shift in the spin-orbit acceleration of Eq. (9.189). The
shifted expression is

ã j
A[so] := 3

2c2

∑
B �=A

G MB

r̃3
AB

{
ñ〈 jk〉

AB

[
ṽ

p
A

(
(3 + λ)Ŝkp

A + 4Ŝkp
B

)
− ṽ

p
B

(
(3 + λ)Ŝkp

B + 4Ŝkp
A

)]

+ ñ〈kp〉
AB (ṽA − ṽB)p

(
(3 − λ)Ŝ jk

A + 4Ŝ jk
B

)}
, (9.245)

and there are no additional changes to the post-Newtonian and spin–spin accelerations.
Ambiguities tend to make one feel uncomfortable. Things ought to be well defined, one

feels, and there ought to be a “correct” value of λ. There is no such thing, however, and one
must learn to accept the freedom associated with the choice of representative world line. In
a way, the freedom to shift the world line is analogous to the inherent freedom in general
relativity to shift the coordinate system. The coordinate freedom is complete, and one knows
that a coordinate transformation will produce a change in the metric, and a change in the
equations of motion. One learns to live with this freedom, and to eliminate the coordinate
ambiguity by formulating well-posed questions that have coordinate-independent answers.
The situation is similar in the case of the representative world line. Here also the freedom is
complete (even though we have restricted it to a one-parameter family in this discussion),
and here also a shift in world line produces a change in the metric and the equations
of motion. One must learn to live with the freedom, and to eliminate the ambiguity by
formulating meaningful questions with precise answers.

In the literature the spin–orbit acceleration has traditionally been presented in two canon-
ical forms corresponding to λ = 0 and λ = 1, respectively, and the choice of λ is often
described as “imposing a spin supplementary condition;” for example, the choice λ = 1 is
described as the “covariant spin supplementary condition,” for reasons that we won’t care
to go into here. Each form is acceptable, but one must be sure to implement the choice of λ

consistently in the equations of motion, the metric, and any other quantity computed from
these ingredients.
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473 9.5 Motion of spinning bodies

9.5.9 Binary systems

To conclude our discussion of spinning bodies, we specialize our results to the case of
a binary system involving a first body of mass-energy M1, position r1, velocity v1, and
spin S1, and a second body of mass-energy M2, position r2, velocity v2, and spin S2. We
adopt the one-parameter family of representative world lines introduced in the preceding
subsection, but omit the tildes on the position and velocity vectors to keep the notation
uncluttered.

Returning to the discussion of Sec. 9.3.7 but incorporating the changes coming from the
spins, we find that the system’s barycenter is now situated at

M R = M1

[
1 + 1

2c2

(
v2

1 − G M2

r

)]
r1 + M2

[
1 + 1

2c2

(
v2

2 − G M1

r

)]
r2

+ 1 + λ

2c2

(
v1 × S1 + v2 × S2

)
+ O(c−4). (9.246)

Imposing the barycentric condition R = 0 allows us to express r1 and r2 in terms of the
separation r := r1 − r2 and relative velocity v := v1 − v2. We find that r1 = (M2/m)r +
�r and r2 = −(M1/m)r + �r , with

�r := η�

2c2

(
v2 − Gm

r

)
r − 1 + λ

2mc2
v × (

M2 S1 − M1 S2
) + O(c−4), (9.247)

in which m := M1 + M2, η := M1 M2/(M1 + M2)2, and � := (M1 − M2)/(M1 + M2).
These equations imply that v1 = (M2/m)v + O(c−2) and v2 = −(M1/m)v + O(c−2).

The relative acceleration a := a1 − a2 can be expressed as

a = a[0pn] + a[1pn] + a[so] + a[ss] + O(c−4), (9.248)

with a[0pn] and a[1pn] given by Eq. (9.142), and the spin–orbit and spin–spin accelerations
given by

a j [so] = 3G

2c2r3

{
n〈 jk〉v p

[
(3 + λ)σ kp + 4Skp

] + n〈kp〉v p
[
(3 − λ)σ jk + 4S jk

]}
(9.249)

and

a j [ss] = −15Gm

c2r4
Ŝkp

1 Ŝkq
2 n〈 jqp〉, (9.250)

respectively, in which r := |r|, n := r/r , and

σ jk := M2

M1
S jk

1 + M1

M2
S jk

2 , S jk := S jk
1 + S jk

2 . (9.251)

These become

a[so] = G

c2r3

{
3

2
(n × v) · [

(3 + λ)σ + 4S
]
n + 3

2
(n · v)n × [

(3 − λ)σ + 4S
]

− v × (3σ + 4S)

}
(9.252)
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and

a[ss] = −3Gm

c2r4

[
(Ŝ1 · Ŝ2)n − 5(Ŝ1 · n)(Ŝ2 · n)n + (Ŝ1 · n)Ŝ2 + (Ŝ2 · n)Ŝ1

]
, (9.253)

when we express the accelerations in terms of the spin vectors; here we have that σ :=
(M2/M1)S1 + (M1/M2)S2, S := S1 + S2, Ŝ1 := S1/M1, and Ŝ2 := S2/M2.

The spin-precession equations become

d S̄1

dt
= �1 × S̄1, (9.254)

in which S̄1 is the proper spin of the first body, and

�1 = �1[so] + �1[ss], (9.255)

with

�1[so] = 2ηGm

c2r2

(
1 + 3M2

4M1

)
n × v, (9.256a)

�1[ss] = G

c2r3

[
3(S̄2 · n)n − S̄2

]
, (9.256b)

is the precessional angular velocity. The equations for the second body are obtained by a
simple exchange of labels 1 ↔ 2.

9.6 Point particles

The calculations that led to the inter-body metric of Eq. (9.81) were laborious, and most of
this labor was spent on the computation of terms that depend on the internal structure of
each body. These terms, however, all cancel out after invoking the equilibrium conditions,
and they do not appear in the final expression for the metric. This effort is not entirely
wasted, because it generates considerable evidence that general relativity satisfies the strong
formulation of the principle of equivalence, but one wonders whether a shortcut to the final
result might not exist.

In this final section of Chapter 9 we examine the shortcut that results when the bodies
are modeled as point particles. We show that the road to the metric is made much shorter
indeed, but that this efficiency comes at a high price: the need to regularize divergent
integrals. The origin of the problem is easy to identify: a point particle possesses an infinite
mass density ρ∗ and produces a Newtonian potential U that diverges at the particle’s
position; because the product ρ∗U acts as a source for the post-Newtonian potential 	,
the mathematical existence of this object becomes questionable. We shall show, however,
that a simple and well-motivated regularization prescription allows us to make sense of the
divergent integrals, and the method reproduces the results displayed in Eq. (9.81).

We use the shortcut extensively in Chapter 11, when we calculate the gravitational waves
produced by the motion of an N -body system. Throughout this section we take the bodies
to have no spin, so that S jk

A = 0.
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9.6.1 Energy-momentum tensor

The description of a point particle moving in a curved spacetime was developed in Sec. 5.3.4.
The particle has a mass m, it moves on a world line described by the parametric relations
rα(τ ), and its velocity four-vector is uα = drα/dτ ; τ is proper time on the particle’s world
line. Its energy-momentum tensor was displayed in Eq. (5.108); it is

T αβ = mc

∫
uαuβ

δ
(
xμ − rμ(τ )

)
√−g

dτ. (9.257)

This expression can be simplified if we change the variable of integration from τ to r0(τ ).
This permits an integration over the delta function δ(x0 − r0), and we obtain

T αβ = muαuβ

γ
√−g

δ
(
x − r(t)

)
, (9.258)

where γ := u0/c. The particle’s world line is now described by the relations r(t) with
t := x0/c, and the velocity four-vector is decomposed as uα = γ (c, v) with v := d r/dt .

Equation (9.258) can be compared with Eq. (5.91), which gives the energy-momentum
tensor of a perfect fluid. The comparison reveals that the point particle is a limiting case of
a perfect fluid, with a proper energy density given by μ = mc2γ −1(−g)−1/2δ(x − r), and a
vanishing pressure p. Since μ = ρc2 + ε, where ρ is the proper mass density and ε is the
proper density of internal energy, we see that we can effectively set ε = 0, or equivalently
set the internal energy per unit mass � to zero. The conserved mass density is

ρ∗ = mδ
(
x − r(t)

)
. (9.259)

The fluid’s velocity field, in this case, reduces to the particle’s velocity v(t).
The preceding description applies to a single particle. For a system of N particles we

add the contributions from each particle, and the conserved mass density becomes

ρ∗ =
∑

A

m Aδ
(
x − r A(t)

)
, (9.260)

with m A denoting the mass of each particle, and r A(t) the individual trajectories. For the
system we still have

� = p = 0, (9.261)

and the velocity field reduces to the individual velocities vA(t).

9.6.2 Regularization

Equation (9.261) implies that each “body” can be assigned a zero integrated pressure
PA and a zero internal energy E int

A . The internal kinetic energy TA vanishes also, and the
equilibrium condition of Eq. (9.12) indicates that the gravitational potential energy �A must
also be assigned a value of zero. This sensible conclusion, however, creates a mathematical
inconsistency.
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Going back to the definition of Eq. (9.8), the potential-energy integral is

�A = −1

2
G

∫
A

ρ∗ρ∗′

|x − x′| d3x ′d3x, (9.262)

where ρ∗ stands for ρ∗(t, x), while ρ∗′ stands for ρ∗(t, x′). The integral involves a product of
delta functions, and its value is mathematically ill-defined. It is not clear, therefore, that �A

can be set equal to zero. To explore this we substitute m Aδ(x − r A) for ρ∗, m Aδ(x′ − r A)
for ρ∗′, and we integrate with respect to d3x ′; the result is

�A = −1

2
Gm2

A

∫
A

δ(x − r A)

|x − r A| d3x, (9.263)

and we see why the integral is ill-defined: the quantity δ(x − r A)/|x − r A| is not defined
as a distribution, and a blind evaluation would return 1/0. This mathematical difficulty
illustrates rather well the spectacular failure of the point particle to provide a sensible
model for an extended body in general relativity; the non-linearity of the field equations
simply won’t allow it.

All is not lost, however. We can reconcile the diverging values for �A if we introduce
the seemingly nonsensical regularization prescription

δ(x − r A)

|x − r A| ≡ 0. (9.264)

With this rule the integral becomes well-defined, and we arrive at the desired result, �A = 0.
As we shall see, the regularization prescription is the only additional rule that is required to
make sense of all the ill-defined integrals that we shall encounter; and with this prescription
we shall be able to recover the metric of Eq. (9.81) on the basis of the point-particle model.

The regularization prescription of Eq. (9.264) is a special case of a more powerful method
known as Hadamard regularization, which was used to great benefit by our friends Luc
Blanchet and Thibault Damour in their work (along with their collaborators) on high-order
post-Newtonian theory. The method works as follows.

Let F(x; r) be a function of x that diverges when x approaches the point r . Specifically,
assume that its behavior near x = r is given by the Laurent series

F(x; r) =
nmax∑
n=0

s−n fn(n; r) + O(s), (9.265)

where s := x − r , s := |x − r|, and n := s/s. The function therefore diverges as s−nmax

when x → r , and it clearly does not have a well-defined value at x = r . We regularize it
by extracting its partie finie at the singular point x = r . This is defined by

�F�(r) := 1

4π

∫
f0(n; r) d�(n), (9.266)

in which d�(n) is an element of solid angle in the direction of the unit vector n. Thus, the
partie finie of F is the angular average of the zeroth term f0(n; r) in its Laurent series. The
partie finie can be used to make sense of the product of F with the delta function δ(x − r):
We declare that

F(x; r)δ(x − r) ≡ �F�(r) δ(x − r). (9.267)

It follows immediately from this rule that
∫

F(x; r)δ(x − r) d3x = �F�(r).
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We now see that Eq. (9.264) is indeed a special case of Hadamard regularization. In this
case F = |x − r|−1, and its partie finie vanishes; Eq. (9.267) then implies δ(x − r)/|x −
r| ≡ 0. Hadamard regularization even allows us to generalize the rule to δ(x − r)/|x −
r|n ≡ 0 for any positive integer n.

9.6.3 Potentials

The gravitational potentials are computed by substituting Eqs. (9.260) and (9.261) into the
Poisson integrals of Eqs. (8.4). We immediately obtain

U =
∑

A

G MA

sA
, (9.268a)

U j =
∑

A

G MAv
j
A

sA
, (9.268b)

X =
∑

A

G MAsA, (9.268c)

where sA is the length of the vector sA := x − r A(t), and we have used the fact that since
TA = �A = E int

A = 0, the total mass-energy MA of a point particle is equal to its material
mass m A.

The potential ψ requires more work. The starting point is

ψ = G

∫
ρ∗′( 3

2v′2 − U ′)
|x − x′| d3x ′, (9.269)

and we decompose the Newtonian potential as U ′ = U ′
A + U ′

¬A, where U ′
A = G MA/s ′

A and
U ′

¬A = ∑
B �=A G MB/s ′

B , with s ′
A := |x′ − r A(t)|. The integral involving U ′

A is

−
∑

A

G2 M2
A

∫
δ(x′ − r A)

|x′ − r A|
1

|x − x′| d3x ′,

and this is ill-defined. The regularization prescription of Eq. (9.264), however, dictates that
the integral vanishes. The remaining piece of ψ is

∑
A

G MA

sA

[
3

2
v2

A − U¬A(r A)

]
,

and we arrive at

ψ = 3

2

∑
A

G MAv2
A

sA
−

∑
A

∑
B �=A

G MA MB

sArAB
, (9.270)

where rAB is the length of the vector r AB := r A(t) − r B(t).
According to Eq. (8.3), the post-Newtonian potential is 	 = ψ + 1

2∂t t X . Differentiation
of the superpotential yields

∂t t X =
∑

A

G MA

sA

[
v2

A − (nA · vA)2
]

−
∑

A

G MAnA · aA, (9.271)
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where nA := sA/sA. To evaluate this fully we need an expression for aA, the acceler-
ation of particle A. For our purposes here it suffices to use the Newtonian expression
−∑

B �=A G MB nAB/r2
AB , where nAB := r AB/rAB . This yields

∂t t X =
∑

A

G MA

sA

[
v2

A − (nA · vA)2
]

+
∑

A

∑
B �=A

G2 MA MB(nAB · nA)

r2
AB

. (9.272)

Collecting results, the post-Newtonian potential is

	 =
∑

A

G MA

sA

[
2v2

A − 1

2
(nA · vA)2

]
−

∑
A

∑
B �=A

G2 MA MB

rABsA

(
1 − nAB · sA

2rAB

)
. (9.273)

Our expressions for U , U j , and 	 agree with Eqs. (9.55), (9.58), and (9.80), respec-
tively, and we recover the inter-body metric of Eqs. (9.81). It should be evident that the
computations carried out here were far less tedious than those presented in Sec. 9.2. The
point-particle model, in spite of its mathematical difficulties and the need to regularize
divergent integrals, has clear merits.

9.7 Bibliographical notes

The post-Newtonian equations of motion derived in Sec. 9.3 were first obtained by Lorentz
and Droste (1917). A version of the equations, containing an error, was obtained indepen-
dently by de Sitter (1916); the mistake was eventually corrected by Eddington and Clark
(1938). A definitive treatment of the problem of motion was provided by Einstein, Infeld,
and Hoffmann (1938), and the history of this fascinating episode in the development of
general relativity is related in Havas (1989). Another fine survey of the “problem of mo-
tion” in Einstein’s theory is Damour (1987). The method of derivation adopted in Sec. 9.3
is adapted from Will (1993).

The alternative method employed in Sec. 9.4 to derive equations of motion for com-
pact bodies originates in the work of Demianski and Grishchuk (1974), D’Eath (1975),
and Damour (1983). The method was developed systematically in Damour, Soffel, and
Xu (1992), and generalized to bodies of arbitrary shape and composition by Racine
and Flanagan (2005). The particular approach adopted in Sec. 9.4 is adapted from Taylor
and Poisson (2008).

The motion of spinning bodies in curved spacetime has a long history, which is also
summarized in Havas (1989). The equations of motion were first derived on the basis of
point-particle models by Mathisson (1937) and Papapetrou (1951), and the importance of
imposing a “spin supplementary condition” was stressed by Barker and O’Connell (1974).
Derivations making use of extended bodies were provided later, and our methods in Sec. 9.5
are based on Kidder (1995) and Will (2005). An elegant alternative method was devised by
Damour, Soffel, and Xu (1993).

The mathematical theory of Hadamard regularization, touched upon very briefly in
Sec. 9.6, is developed fully in Sellier (1994) and Blanchet and Faye (2000).
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9.8 Exercises

9.1 Verify all the results listed in Eqs. (9.91).

9.2 Verify all the results listed in Eqs. (9.103).

9.3 Show that the post-Newtonian equations of motion for a system of N bodies can be
derived from the Lagrangian

L = −
∑

A

MAc2

[
1 − 1

2
(vA/c)2 − 1

8
(vA/c)4

]
+ 1

2

∑
A,B �=A

G MA MB

rAB

×
{

1 + 1

c2

[
3v2

A − 7

2
vA · vB − 1

2
(nAB · vA)(nAB · vB) −

∑
C �=A

G MC

rAC

]}
.

Find the canonical momentum P A for this Lagrangian, and show that
∑

A P A equals
the conserved total momentum of Eq. (9.132b).

9.4 Verify Eq. (9.141).

9.5 Verify all the results listed in Eqs. (9.205).

9.6 To conclude the exploration of the one-parameter family of representative world lines
in Sec. 9.5.8, calculate the changes in the barycenter position R and total momentum
P induced by the transformation of Eq. (9.239).

9.7 We saw in Sec. 9.6 that the gravitational potentials of a spinless body can be computed
efficiently by modeling the body as a point mass with density m Aδ(x − r A). Here we
wish to show that the body’s spin can be accommodated by making the substitution

v j → v
j
A + 1

2m A
S jk

A ∂k

in the potentials. Here the derivative operator attached to the spin tensor is meant
to act on the delta function supplied by the density. The prescription is valid to first
order in the spin tensor, and terms quadratic in the spin must be neglected. Use the
prescription to compute the potentials U j , �1, and �6, and compare your results to
those displayed in Sec. 9.5.3.
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